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◮ Let X be a closed oriented 4-manifold.

Intersection form

QX : H2(X; Z)/torsion ×H2(X; Z)/torsion → Z,

(a, b) 7→ 〈a ∪ b, [X]〉.

◮ QX is a symmetric bilinear unimodular form.

[J.H.C.Whitehead ’49]

If π1X = 1, the homotopy type of X is determined by the
isomorphism class of QX .
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In 4-dim. TOP

π1X = 1

[Freedman ’82]

The homeo type of X is determined by

◮ the iso. class of QX if QX is even,

◮ the iso. class of QX & ks(X) if QX is odd.

π1X 6= 1

If π1X is “Good” ⇒ Freedman theory + Surgery theory.
→ Difficult.
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In 4-dim. DIFF

◮ Let X be a closed oriented smooth 4-manifold.

[Rohlin] If X is spin ⇒ sign(X) ≡ 0 mod 16.

[Donaldson] If QX is definite ⇒ QX ∼ The diagonal form.

[Furuta] If X is spin & QX is indefinite, then

b2(X) ≥
10

8
| sign(X)| + 2.
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Refinements, variants

[Furuta-Kametani ’05]

The strong 10/8-inequality in the case when b1(X) > 0.

[Froyshov ’10]

A local coefficient analogue of Donaldson’s theorem.

local coefficients ↔ double coverings ↔ H1(X; Z/2)
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Froyshov’s results
4-manifolds and intersection forms with local coefficients, arXiv:1004.0077

◮ Suppose a double covering X̃ → X is given.

◮ l := X̃ ×{±1} Z, a Z-bundle over X.
−→ H∗(X; l): l-coefficient cohomology.

◮ Note l ⊗ l = Z. The cup product

∪ : H2(X; l) ×H2(X; l)→ H4(X; Z) ∼= Z,

induces the intersection form with local coefficient

QX,l : H2(X; l)/torsion ×H2(X; l)/torsion → Z.

◮ QX,l is also a symmetric bilinear unimodular form.
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A special case of Froyshov’s theorem

◮ X: a closed connected oriented smooth 4-manifold s.t.

b+(X) + dimZ/2(torH1(X; Z)⊗ Z/2) ≤ 2. (1)

◮ l→ X: a nontrivial Z-bundle.

If QX,l is definite ⇒ QX,l ∼ diagonal.

◮ The original form of Froyshov’s theorem is:

If X with ∂X = Y : ZHS3 satisfies (1)
& QX,l is nonstandard definite

⇒ δ0 : HF 4(Y ; Z/2)→ Z/2 is non-zero.

◮ Y = S3 ⇒ HF 4(Y ; Z/2) = 0 ⇒The above result.
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◮ The proof uses the moduli space of SO(3)-instantons on a

SO(3)-bundle V .

◮ Twisted reducibles (stabilizer ∼= Z/2) play an important role.
V is reduced to λ⊕ E, where E is an O(2)-bundle,

λ = detE: a nontrivial R-bundle.

Cf [Fintushel-Stern’84] gives an alternative proof of Donaldson’s
theorem by using SO(3)-instantons.
−→ Abelian reducibles (stabilizer ∼= U(1))
V is reduced to R⊕ L, where L is a U(1)-bundle.

- Donaldson’s theorem is proved by Seiberg-Witten theory, too.

Question
Can we prove Froyshov’s result by Seiberg-Witten theory?

−→ Our result would be an answer.
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Main results

Theorem 1.(N.)

◮ X: a closed connected ori. smooth 4-manifold.

◮ l→ X: a nontrivial Z-bdl. s.t. w1(λ)2 = 0, where λ = l ⊗ R.

If QX,l is definite ⇒ QX,l ∼ diagonal.

Cf. Froyshov’s theorem

◮ X: — s.t. b+(X) + dimZ/2(torH1(X; Z)⊗ Z/2) ≤ 2.

◮ l→ X: a nontrivial Z-bundle.

If QX,l is definite ⇒ QX,l ∼ diagonal.

Nobuhiro Nakamura Pin−(2)-monopole equations and its applications



Introduction
Pin−(2)-monopole theory

Proof of Theorem 1 & 2
Recent results

Froyshov’s results
Main results
Applications

Main results

Theorem 1.(N.)

◮ X: a closed connected ori. smooth 4-manifold.

◮ l→ X: a nontrivial Z-bdl. s.t. w1(λ)2 = 0, where λ = l ⊗ R.

If QX,l is definite ⇒ QX,l ∼ diagonal.

◮ For the proof, we will introduce a variant of Seiberg-Witten
equations
−→ Pin−(2)-monopole equations on Spinc

−-structures on X.

◮ Spinc
−-structure is a Pin−(2)-variant of Spinc-str. defined by

M.Furuta, whose complex structure is “twisted along l”.
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◮ The moduli space of Pin−(2)-monopoles is compact.
−→ Bauer-Furuta theory can be developed.

Furuta’s theorem
Let X be a closed ori. smooth spin 4-manifold with indefinite QX .

b+(X) ≥ −
sign(X)

8
+ 1.

Theorem 2(N.)

Let X be a closed connected ori. smooth 4-manifold. For any
nontrivial Z-bundle l→ X s.t. w1(λ)2 = w2(X), where λ = l ⊗R,

b+(X;λ) ≥ −
sign(X)

8
,

where b+(X;λ) = rankH+(X;λ).
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Applications

Recall fundamental theorems.

1. [Rohlin] X4: closed spin ⇒ sign(X) ≡ 0 mod 16.

2. [Donaldson] Definite ⇒ diagonal.

3. [Furuta] The 10/8-inequality

3’ [Furuta-Kametani] The strong 10/8-inequality in the case
when b1 > 0.

Corollary 1(N.)

∃ Nonsmoothable closed indefinite spin 4-manifolds satisfying

◮ sign(X) ≡ 0 mod 16,

◮ the strong 10/8-inequality.
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Proof

◮ Let M be T 4 or T 2 × S2. ⇒ QT 4 = 3H , QT 2×S2 = H .

◮ If l′ →M is any nontrivial Z-bundle,
⇒ b2(M ; l′) = 0 & w1(l

′ ⊗ R)2 = 0.

◮ Let V be a topological 4-manifold s.t. π1V = 1, QV is even
and definite, sign(V ) ≡ 0 mod 16. (⇒ V is spin.)

◮ Choose a large k s.t. X = V #kM satisfies the strong
10/8-inequality.

◮ Let l := Z#kl′ → X. ⇒ QX,l = QV , w1(l ⊗ R)2 = 0.

◮ Suppose X is smooth. By Theorem 1,
QX,l = QV ∼ diagonal. Contradiction.

Remark
Similar examples can be constructed by using Theorem 2.
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Non-spin manifolds

10/8-conjecture

Every non-spin closed smooth 4-manifold X with even form
satisfies

b2(X) ≥
10

8
| sign(X)|.

[Bohr,’02],[Lee-Li,’00]

If the 2-torsion part of H1(X; Z) is Z/2i or Z/2⊕ Z/2
⇒ the 10/8-conjecture is true.

Corollary 2(N.)

∃ Nonsmoothable non-spin 4-manifolds X with even form s.t.

◮ the 2-torsion part of H1(X; Z) ∼= Z/2,

◮ the 10/8-conjecture is true.
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Review on the Seiberg-Witten theory

◮ X: a closed ori. smooth 4-manifold with a Rimaniann metric.

◮ Suppose a Spinc-structure on X is given.
Spinc(4) = Spin(4)×{±1} U(1)
→ L: the determinant U(1)-bundle.

◮ Monopole map

µSW : A(L)× Γ(S+)→ Ω+ × Γ(S−),

where A(L): the space of U(1)-connections on L,
S±: spinor bundles.

◮ solutions of SW-eqn ↔ zero points of µSW .

◮ µSW is GSW -equivariant, where GSW = Map(X,U(1)).
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◮ The moduli space µ−1
SW (0)/GSW .

◮ Restriction to intersection forms

◮ SW-invariants ∈ Z

◮ Bauer-Furuta invariants ∈ a stable cohomotopy group
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Overview of Pin−(2)-monopole theory

◮ Spinc
−-structure on X

Spinc
−(4) = Spin(4)×{±1} Pin−(2) (Pin−(2) = U(1)∪ j U(1))

→ E: O(2)-bundle

◮ Pin−(2)-monopole map

µ : A(E)× Γ(S+)→ Ω+(iλ)× Γ(S−),

where A(E): the space of O(2)-connections on E,
S±: spinor bundles,
λ = det E.

◮ µ is G-equivariant, where

G = Γ(E ×O(2) U(1)).

where O(2)→ {±1}y U(1) by z 7→ z−1.
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◮ The moduli space µ−1(0)/G.

◮ Restriction to intersection forms with local coefficients
→ Today’s topic

◮ Pin−(2)-monopole SW-inv. ∈ Z2 or Z

◮ Pin−(2)-monopole BF-inv. ∈ a stable cohomotopy group
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Spinc−(n)-groups

Pin−(2) = 〈U(1), j〉 = U(1) ∪ j U(1) ⊂ Sp(1) ⊂ H.

The two-to-one homomorphism Pin−(2)→ O(2) is defined by

z ∈ U(1) ⊂ Pin−(2) 7→ z2 ∈ U(1) ⊂ O(2),

j 7→

(

1 0
0 −1

)

.

Definition Spinc
−(n) := Spin(n)×{±1} Pin−(2).

1→ {±1} → Spinc
−(n)→ SO(n)×O(2)→ 1.

Note. The id. compo. of Spinc
−(n) is

Spinc(n) = Spin(n)×{±1} U(1).
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Spinc−-structures

◮ Let X be an oriented 4-manifold.

◮ Fix a Riemannian metric.
−→ Fr(X): The SO(4)-frame bundle.

Spinc
−-structure

A Spinc
−-structure on X is given by (P, τ) s.t.

◮ P : a Spinc
−(4)-bundle over X,

◮ τ : P/Pin−(2)
∼=
→ Fr(X).

Then we have

◮ E = P/Spin(4): O(2)-bundle over X,

◮ X̃ = P/Spinc(4): a double covering of X.

detE ∼= X̃ ×{±1} R =: λ.
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The following data (P̃ , τ̃ , ι̃) on X̃ gives a Spinc
−-structure on X.

◮ (P̃ , τ̃ ): A Spinc-structure on X̃.
◮ P̃ : a Spinc(4)-bundle over X̃,

◮ τ̃ : P̃ / U(1)
∼=
→ Fr(X̃)

◮ ι̃ : P̃ → P̃ : a map covering X̃
(−1)
−→ X̃ s.t.

ι̃(pz) = ι̃(p)z−1, for z ∈ U(1), and ι̃2 = −1.

Let ∆± be the complex spinor rep. of Spinc(4).
⇒ ∃j-action on ∆± s.t.

j2 = −1, and jz = z−1j for z ∈ U(1)

⇒ I = (ι̃, j) is an antilinear involution on S̃± = P̃ ×Spinc(4) ∆±.

⇒ S± = S̃±/I over X is the spinor bundle for the Spinc
−-str.

⇒ S± are NOT complex bundles.
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Take the I-invariant part of the monopole map µSW on X̃ .
⇒ Pin−(2)-monopole map,

µ : A× Γ(S+)→ Ω+(iλ)× Γ(S−),

where λ = X̃ ×{±1} R,
A = {O(2)-connections on E} ← an affine sp. of Ω1(iλ)

Symmetry

G ={f ∈ Map(X̃,U(1)) | f(−x) = f(x)−1}

=Γ(X̃ ×{±1} U(1)),

where {±1}y U(1) by z 7→ z−1.
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◮ A basic fact due to [Furuta ’08]:
∃ Spinc

−-structure on (X,E) ⇔ w2(X) = w2(E) + w1(E)2.

◮ If E ∼= R⊕ λ = R⊕ (X̃ ×{±1} R)

⇒ P is reduced to Spin(4) ×{±1} 〈±1,±j〉-bundle
⇒ an analogy of spin structure.
⇒ ∃Larger symmetry

G′ = Γ(X̃ ×{±1} Pin−(2)),

where {±1}y Pin−(2) = U(1) ∪ j U(1) is given by

z 7→z−1 for z ∈ U(1),

j 7→j.
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M = µ−1(0)/G ⊂ (A× Γ(S+))/G

Proposition

◮ M is compact.

◮ The virtual dimension of M:

d =
1

4
(c̃1(E)2 − sign(X)) − (b0(X; l) − b1(X; l) + b+(X; l)),

where c̃1(E) is the twisted 1st Chern class.

◮ c̃1(E) is the Euler class of E considered in H2(X; l)
where l ⊂ λ = detE, sub-Z-bundle.

◮ If l is nontrivial & X connected ⇒ b0(X; l) = 0.
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Reducibles

◮ For (A,φ) ∈ A× Γ(S+), if φ 6= 0 ⇒ G-action is free.

◮ The stabilizer of (A, 0) = {±1} ⊂ G = Γ(X̃ ×{±1} U(1)).

◮ The elements of the form (A, 0) are called reducibles.

◮ In general, { reducible solutions }/G ∼= T b1(X;l) ⊂M.

Cf. In the SW-case, the stabilizer of (A, 0) = S1 ⊂ Map(X,S1).
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Key difference

Ordinary SW case

◮ Reducible → The stabilizer = S1.

MSW \ {reducibles} ⊂(A× (Γ(S+) \ {0}))/GSW ≃ BGSW

≃T b1(X) × CP∞ .

Pin−(2)-monopole case

◮ Reducible → The stabilizer = {±1}.

M\ {reducibles} ⊂(A× (Γ(S+) \ {0}))/G ≃ BG

≃T b1(X;l) × RP∞ .
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Proof of Theorem 1

Outline of the proof

◮ We will prove every characteristic element w of QX,l satisfies

|w2| ≥ rankH2(X; l),

by proving for every E,

d = dimM≤ 0.

◮ Then Elkies’ theorem implies QX,l should be standard.

- An element w in a unimodular lattice L is called characteristic

if w · v ≡ v · v mod 2 for ∀v ∈ L.

[Elkies ’95]

L ⊂ R
n: unimodular lattice. If ∀characteristic element w ∈ L

satisfies |w2| ≥ rankL, ⇒ L ∼= diagonal.
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The structure ofM when b+(X; l) = 0

◮ Suppose a Spinc
−-structure (P, τ) on X is given.

◮ For simplicity, assume b1(X, l) = 0.
⇒ ∃1 reducible class ρ0 ∈M.

◮ Perturb the Pin−(2)-monopole equations by adding
η ∈ Ω+(iλ) to the curvature equation. → F+

A = q(φ) + η.

◮ For generic η, M\ {ρ0} is a d-dimensional manifold.

◮ Fix a small neighborhood N(ρ0) of {ρ0}.

⇒ N(ρ0) ∼= R
d/{±1} = a cone of RPd−1

Then M :=M\N(ρ0) is a compact d-manifold &
∂M = RPd−1.
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◮ Note M⊂ (A× (Γ(S+) \ {0})) /G =: B∗.

◮ Recall B∗ ≃
h.e.

T b1(X;l) × RP∞.

Lemma
If b+(X; l) = 0 & b1(X; l) = 0 ⇒ d = dimM≤ 0.

Proof

◮ Suppose d > 0.

◮ RecallM is a compact d-manifold s.t. ∂M = RPd−1.

◮ ∃C ∈ Hd−1(B∗; Z/2) ∼= Hd−1(RP∞; Z/2) s.t.
〈C, [∂M]〉 6= 0. ⇒ Contradiction.
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◮ Note sign(X) = b+(X; l) − b−(X; l) for any Z-bundle l.

◮ By Lemma, if l is nontrivial & b+(X; l) = 0 & b1(X; l) = 0,

d =
1

4
(c̃1(E)2 − sign(X)) − (b0(X; l) − b1(X; l) + b+(X; l))

=
1

4
(c̃1(E)2 + b2(X; l)) ≤ 0.

Note c̃1(E)2 ≤ 0 if b+(X ; l) = 0.

◮ Therefore, for any E which admits a Spinc
−-structure,

b2(X; l) ≤ |c̃1(E)2|.

By varying E, we can prove every characteristic element w satisfies

b2(X; l) ≤ |w2|.
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The outline of the proof of Theorem 2
◮ If E = R⊕ λ ⇒ Spinc

−-structure on (X,E) has the larger
symmetry G′ = Γ(X̃ ×{±1} Pin−(2)).

◮ For simplicity, assume b1(X; l) = 0.
◮ Then, by taking finite dimensional approximation of the

monopole map, we obtain a proper Z4-equivariant map

f : R̃
m ⊕C

n+k
1 → R̃

m+b ⊕ C
n
1 ,

where
◮ R̃ is R on which Z4 acts via Z4 → Z2 = {±1}y R,
◮ C1 is C on which Z4 acts by multiplication of i,
◮ k = − sign(X)/8, b = b+(X ; λ), m, n are some integers.

Here, Z4 is generated by the constant section

j ∈ G′ = Γ(X̃ ×{±1} Pin−(2)).
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◮ By using the techniques of equivariant homotopy theory, e.g.,
tom Dieck’s character formula, we can see that any proper
Z4-map of the form,

f : R̃
m ⊕C

n+k
1 → R̃

m+b ⊕ C
n
1 ,

should satisfy b ≥ k.

◮ That is,

b+(X;λ) ≥ −
1

8
sign(X).
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Finite dimensional approximation

◮ Take a flat connection A0 on R⊕ λ.

Pin−(2)-monopole map

µ : Ω1(iλ)⊕ Γ(S+)→ (Ω0 ⊕Ω+)(iλ) ⊕ Γ(S−) =:W,

(a, φ) 7→ (d∗a, FA0 + d+a + q(φ),DA0+aφ).

◮ Let l(a, φ) := (d∗a, d+a,DA0φ) be the linear part of µ.
→ l is Fredholm.

◮ c = µ− l: quadratic, compact.

◮ Choose a finite dim. subspace U ⊂ W s.t. dim U ≫ 1,
U ⊃ (im l)⊥

◮ Let V := l−1(U) & p : W → U be the L2-projection.

◮ Define f : V → U by f = l + pc. → f : proper, Z4-equiv.
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Final remarks

The genus of embedded surfaces in 4-manifolds

Theorem

◮ X: closed ori. 4-manifold

◮ c: Spinc-structure on X.
L: the determinant line bundle of c.

◮ Σ ⊂ X: connected embedded surface
s.t. [Σ] ∈ H2(X; Z), [Σ] · [Σ] ≥ 0.

If SW(X, c) 6= 0 or BF(X, c) 6= 0, then

−χ(Σ) = 2g − 2 ≥ c1(L)[Σ] + [Σ] · [Σ].

◮ This is due to: [Kronheimer-Mrowka], [Fintushel-Stern],
[Morgan-Szabo-Taubes], [Ozsvath-Szabo],
[Furuta-Kametani-Matsue-Minami]...
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The genus of nonorientable embedded surfaces

◮ (X4, l) as before.

Let us consider a connected surface Σ s.t.

◮ i : Σ →֒ X: embedding

◮ The orientation coefficient of Σ = i∗l

→ ∃Fundamental class [Σ] ∈ H2(Σ; i∗l).
Let α := i∗[Σ] ∈ H2(X; l), where i∗ : H2(Σ; i∗l)→ H2(X; l).

Proposition

For ∀α ∈ H2(X; l), there exists Σ as above.

Remark

◮ Σ may be orientable or nonorientable.

Nobuhiro Nakamura Pin−(2)-monopole equations and its applications

Introduction
Pin−(2)-monopole theory

Proof of Theorem 1 & 2
Recent results

The genus of embedded surfaces
Final remarks

Theorem 3.(N.)

◮ (X, l,Σ) as above.

◮ Let α := i∗[Σ] ∈ H2(X; l). Suppose α · α ≥ 0.

◮ c: Spinc
−-structure s.t. det E = l ⊗ R.

◮ c̃: the Spinc-structure on X̃ induced from c.

If SWPin(X, c) 6= 0 or BFPin(X, c) 6= 0
or SW(X̃, c̃) 6= 0 or BF(X̃, c̃) 6= 0, then

−χ(Σ) ≥ c̃1(E) · α + α · α

Remark

◮ Σ: orientable ⇒ −χ(Σ) = 2g − 2.

◮ Σ: nonorientable ⇒ −χ(Σ) = g − 1.
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Example

◮ X: Enriques surface
⇒ π1X = Z/2

⇒ X̃ = K3, l := X̃ ×{±1} Z, λ := X̃ ×{±1} R

⇒ ∃c: Spinc
−-structure s.t. E ∼= R⊕ λ. (c̃1(E) = 0)

⇒ SWPin(X, c) 6= 0 (SW(X̃, c̃) 6= 0)

For Σ
i
→֒ X s.t. α = i∗[Σ] ∈ H2(X; l) & α · α ≥ 0

−χ(Σ) ≥ α · α.
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Final remarks

◮ Pin−(2)-monopole invariants
◮ Calculation, gluing formula, stable cohomotopy refinements

◮ When X̃: symplectic & I∗ω = −ω,

Pin−(2)-monopole inv. =
??

real Gromov-Witten inv.

Cf. [Tian-Wang]

◮ Pin−(2)-monopole Floer theory?
Pin−(2) Heegaard Floer theory?

◮ “Witten conjecture” for Pin−(2)-monopole invariants?
◮ [Feehan-Leness] SW = Donaldson

Pin−(2)-monopole inv. = ???
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