$\operatorname{Pin}^{-}(2)$-monopole equations and its applications

Nobuhiro Nakamura

The University of Tokyo
Sep 28, 2011

Introduction

Froyshov's results
Main results
Applications
Pin ${ }^{-}$(2)-monopole theory
Spin ${ }^{c_{-}-\text {-structures }}$
Moduli spaces
Proof of Theorem $1 \& 2$
Proof of Theorem 1
Proof of Theorem 2

Recent results

The genus of embedded surfaces
Final remarks

- Let X be a closed oriented 4 -manifold.

Intersection form

$$
\begin{gathered}
Q_{X}: H^{2}(X ; \mathbb{Z}) / \text { torsion } \times H^{2}(X ; \mathbb{Z}) / \text { torsion } \rightarrow \mathbb{Z}, \\
(a, b) \mapsto\langle a \cup b,[X]\rangle
\end{gathered}
$$

- Q_{X} is a symmetric bilinear unimodular form.

[J.H.C.Whitehead '49]

If $\pi_{1} X=1$, the homotopy type of X is determined by the isomorphism class of Q_{X}.

In 4-dim. TOP
$\underline{\pi_{1} X=1}$

[Freedman '82]

The homeo type of X is determined by

- the iso. class of Q_{X} if Q_{X} is even,
- the iso. class of $Q_{X} \& \operatorname{ks}(X)$ if Q_{X} is odd.
$\underline{\pi_{1} X \neq 1}$
If $\pi_{1} X$ is "Good" \Rightarrow Freedman theory + Surgery theory.
\rightarrow Difficult.

In 4-dim. DIFF

- Let X be a closed oriented smooth 4-manifold.
[Rohlin]

$$
\text { If } X \text { is } \operatorname{spin} \Rightarrow \operatorname{sign}(X) \equiv 0 \bmod 16
$$

[Donaldson] If Q_{X} is definite $\Rightarrow Q_{X} \sim$ The diagonal form.
[Furuta] If X is spin \& Q_{X} is indefinite, then

$$
b_{2}(X) \geq \frac{10}{8}|\operatorname{sign}(X)|+2
$$

Refinements, variants
[Furuta-Kametani '05]
The strong $10 / 8$-inequality in the case when $b_{1}(X)>0$.
[Froyshov '10]
A local coefficient analogue of Donaldson's theorem.
local coefficients \leftrightarrow double coverings $\leftrightarrow H^{1}(X ; \mathbb{Z} / 2)$

Froyshov's results

4-manifolds and intersection forms with local coefficients, arXiv:1004.0077

- Suppose a double covering $\tilde{X} \rightarrow X$ is given.
- $l:=\tilde{X} \times_{\{ \pm 1\}} \mathbb{Z}$, a \mathbb{Z}-bundle over X.
$\longrightarrow H^{*}(X ; l): l$-coefficient cohomology.
- Note $l \otimes l=\mathbb{Z}$. The cup product

$$
\cup: H^{2}(X ; l) \times H^{2}(X ; l) \rightarrow H^{4}(X ; \mathbb{Z}) \cong \mathbb{Z}
$$

induces the intersection form with local coefficient

$$
Q_{X, l}: H^{2}(X ; l) / \text { torsion } \times H^{2}(X ; l) / \text { torsion } \rightarrow \mathbb{Z}
$$

- $Q_{X, l}$ is also a symmetric bilinear unimodular form.

A special case of Froyshov's theorem

- X : a closed connected oriented smooth 4-manifold s.t.

$$
\begin{equation*}
b^{+}(X)+\operatorname{dim}_{\mathbb{Z} / 2}\left(\operatorname{tor} H_{1}(X ; \mathbb{Z}) \otimes \mathbb{Z} / 2\right) \leq 2 \tag{1}
\end{equation*}
$$

- $l \rightarrow X$: a nontrivial \mathbb{Z}-bundle.

$$
\text { If } Q_{X, l} \text { is definite } \Rightarrow Q_{X, l} \sim \text { diagonal. }
$$

- The original form of Froyshov's theorem is:

$$
\begin{aligned}
& \text { If } X \text { with } \partial X=Y: \mathbb{Z} H S^{3} \text { satisfies }(1) \\
& \& Q_{X, l} \text { is nonstandard definite } \\
& \Rightarrow \delta_{0}: H F^{4}(Y ; \mathbb{Z} / 2) \rightarrow \mathbb{Z} / 2 \text { is non-zero. } \\
& \Rightarrow Y=S^{3} \Rightarrow H F^{4}(Y ; \mathbb{Z} / 2)=0 \Rightarrow \text { The above result. }
\end{aligned}
$$

- The proof uses the moduli space of $\mathrm{SO}(3)$-instantons on a SO(3)-bundle V.
- Twisted reducibles (stabilizer $\cong \mathbb{Z} / 2$) play an important role. V is reduced to $\lambda \oplus E$, where E is an $\mathrm{O}(2)$-bundle,

$$
\lambda=\operatorname{det} E: \text { a nontrivial } \mathbb{R} \text {-bundle. }
$$

Cf [Fintushel-Stern'84] gives an alternative proof of Donaldson's theorem by using $\mathrm{SO}(3)$-instantons.
\longrightarrow Abelian reducibles (stabilizer $\cong \mathrm{U}(1)$)
V is reduced to $\mathbb{R} \oplus L$, where L is a $\mathrm{U}(1)$-bundle.

- Donaldson's theorem is proved by Seiberg-Witten theory, too.

Question

Can we prove Froyshov's result by Seiberg-Witten theory?

\longrightarrow Our result would be an answer.

Main results

Theorem 1.(N.)

- X : a closed connected ori. smooth 4-manifold.
- $l \rightarrow X$: a nontrivial \mathbb{Z}-bdl. s.t. $w_{1}(\lambda)^{2}=0$, where $\lambda=l \otimes \mathbb{R}$.

$$
\text { If } Q_{X, l} \text { is definite } \Rightarrow Q_{X, l} \sim \text { diagonal. }
$$

Cf. Froyshov's theorem

- $X:$ - s.t. $b^{+}(X)+\operatorname{dim}_{\mathbb{Z} / 2}\left(\operatorname{tor} H_{1}(X ; \mathbb{Z}) \otimes \mathbb{Z} / 2\right) \leq 2$.
- $l \rightarrow X$: a nontrivial \mathbb{Z}-bundle.

$$
\text { If } Q_{X, l} \text { is definite } \Rightarrow Q_{X, l} \sim \text { diagonal. }
$$

Main results

Theorem 1.(N.)

- X : a closed connected ori. smooth 4-manifold.
- $l \rightarrow X$: a nontrivial \mathbb{Z}-bdl. s.t. $w_{1}(\lambda)^{2}=0$, where $\lambda=l \otimes \mathbb{R}$.

$$
\text { If } Q_{X, l} \text { is definite } \Rightarrow Q_{X, l} \sim \text { diagonal. }
$$

- For the proof, we will introduce a variant of Seiberg-Witten equations
$\longrightarrow \mathrm{Pin}^{-}(2)$-monopole equations on $\mathrm{Spin}^{{ }^{c-}}$-structures on X.
- Spin^{c-}-structure is a $\mathrm{Pin}^{-}(2)$-variant of Spin^{c}-str. defined by M.Furuta, whose complex structure is "twisted along l ".

- The moduli space of $\operatorname{Pin}^{-}(2)$-monopoles is compact.
\longrightarrow Bauer-Furuta theory can be developed.
Furuta's theorem
Let X be a closed ori. smooth spin 4 -manifold with indefinite Q_{X}.

$$
b_{+}(X) \geq-\frac{\operatorname{sign}(X)}{8}+1
$$

Theorem 2(N.)
Let X be a closed connected ori. smooth 4 -manifold. For any nontrivial \mathbb{Z}-bundle $l \rightarrow X$ s.t. $w_{1}(\lambda)^{2}=w_{2}(X)$, where $\lambda=l \otimes \mathbb{R}$,

$$
b_{+}(X ; \lambda) \geq-\frac{\operatorname{sign}(X)}{8}
$$

where $b_{+}(X ; \lambda)=\operatorname{rank} H^{+}(X ; \lambda)$.

Applications

Recall fundamental theorems.

1. $[$ Rohlin $] X^{4}$: closed spin $\Rightarrow \operatorname{sign}(X) \equiv 0 \bmod 16$.
2. [Donaldson] Definite \Rightarrow diagonal.
3. [Furuta] The $10 / 8$-inequality

3' [Furuta-Kametani] The strong 10/8-inequality in the case when $b_{1}>0$.

Corollary 1(N.)

\exists Nonsmoothable closed indefinite spin 4-manifolds satisfying

- $\operatorname{sign}(X) \equiv 0 \bmod 16$,
- the strong $10 / 8$-inequality.

Proof

- Let M be T^{4} or $T^{2} \times S^{2} . \Rightarrow Q_{T^{4}}=3 H, Q_{T^{2} \times S^{2}}=H$.
- If $l^{\prime} \rightarrow M$ is any nontrivial \mathbb{Z}-bundle, $\Rightarrow b_{2}\left(M ; l^{\prime}\right)=0 \& w_{1}\left(l^{\prime} \otimes \mathbb{R}\right)^{2}=0$.
- Let V be a topological 4-manifold s.t. $\pi_{1} V=1, Q_{V}$ is even and definite, $\operatorname{sign}(V) \equiv 0 \bmod 16 .(\Rightarrow V$ is spin.)
- Choose a large k s.t. $X=V \# k M$ satisfies the strong 10/8-inequality.
- Let $l:=\underline{\mathbb{Z}} \# k l^{\prime} \rightarrow X . \Rightarrow Q_{X, l}=Q_{V}, w_{1}(l \otimes \mathbb{R})^{2}=0$.
- Suppose X is smooth. By Theorem 1, $Q_{X, l}=Q_{V} \sim$ diagonal. Contradiction.

Remark

Similar examples can be constructed by using Theorem 2.

Non-spin manifolds

10/8-conjecture

Every non-spin closed smooth 4-manifold X with even form satisfies

$$
b_{2}(X) \geq \frac{10}{8}|\operatorname{sign}(X)|
$$

[Bohr,'02],[Lee-Li,'00]
If the 2 -torsion part of $H_{1}(X ; \mathbb{Z})$ is $\mathbb{Z} / 2^{i}$ or $\mathbb{Z} / 2 \oplus \mathbb{Z} / 2$
\Rightarrow the $10 / 8$-conjecture is true.
Corollary 2(N.)
Nonsmoothable non-spin 4-manifolds X with even form s.t.

- the 2-torsion part of $H_{1}(X ; \mathbb{Z}) \cong \mathbb{Z} / 2$,
- the $10 / 8$-conjecture is true.

Nobuhiro Nakamura
Pin^{-}(2)-monopole equations and its applications

Pin ${ }^{-}$(2)-montroduction
Proof of Thopole theory
Proof of Theorem $1 \& 2$
Recent results

Spin ${ }^{c}$ - -structures

Moduli spaces

Review on the Seiberg-Witten theory

- X : a closed ori. smooth 4 -manifold with a Rimaniann metric.
- Suppose a Spin^{c}-structure on X is given.
$\operatorname{Spin}^{c}(4)=\operatorname{Spin}(4) \times_{\{ \pm 1\}} U(1)$
$\rightarrow L$: the determinant $\mathrm{U}(1)$-bundle.
- Monopole map

$$
\mu_{S W}: \mathcal{A}(L) \times \Gamma\left(S^{+}\right) \rightarrow \Omega^{+} \times \Gamma\left(S^{-}\right)
$$

where $\mathcal{A}(L)$: the space of $\mathrm{U}(1)$-connections on L, $S^{ \pm}$: spinor bundles.

- solutions of SW-eqn \leftrightarrow zero points of $\mu_{S W}$.
- $\mu_{S W}$ is $\mathcal{G}_{S W}$-equivariant, where $\mathcal{G}_{S W}=\operatorname{Map}(X, \mathrm{U}(1))$.
- The moduli space $\mu_{S W}^{-1}(0) / \mathcal{G}_{S W}$.
- Restriction to intersection forms
- SW-invariants $\in \mathbb{Z}$
- Bauer-Furuta invariants \in a stable cohomotopy group

Overview of $\mathrm{Pin}^{-}(2)$-monopole theory

- Spin $^{c-}$-structure on X
$\operatorname{Spin}^{c_{-}}(4)=\operatorname{Spin}(4) \times_{\{ \pm 1\}} \operatorname{Pin}^{-}(2) \quad\left(\operatorname{Pin}^{-}(2)=U(1) \cup j U(1)\right)$
$\rightarrow E: \mathrm{O}(2)$-bundle
- $\mathrm{Pin}^{-}(2)$-monopole map

$$
\mu: \mathcal{A}(E) \times \Gamma\left(S^{+}\right) \rightarrow \Omega^{+}(i \lambda) \times \Gamma\left(S^{-}\right)
$$

where $\mathcal{A}(E)$: the space of $\mathrm{O}(2)$-connections on E,
$S^{ \pm}$: spinor bundles,
$\lambda=\operatorname{det} E$.

- μ is \mathcal{G}-equivariant, where

$$
\mathcal{G}=\Gamma\left(E \times_{\mathrm{O}(2)} \mathrm{U}(1)\right) .
$$

where $\mathrm{O}(2) \rightarrow\{ \pm 1\} \curvearrowright \mathrm{U}(1)$ by $z \mapsto z^{-1}$.

- The moduli space $\mu^{-1}(0) / \mathcal{G}$.
- Restriction to intersection forms with local coefficients \rightarrow Today's topic
- $\operatorname{Pin}^{-}(2)$-monopole SW-inv. $\in \mathbb{Z}_{2}$ or \mathbb{Z}
- $\mathrm{Pin}^{-}(2)$-monopole BF-inv. \in a stable cohomotopy group
$\operatorname{Spin}^{c_{-}}(n)$-groups

$$
\operatorname{Pin}^{-}(2)=\langle\mathrm{U}(1), j\rangle=\mathrm{U}(1) \cup j \mathrm{U}(1) \subset \mathrm{Sp}(1) \subset \mathbb{H} .
$$

The two-to-one homomorphism $\mathrm{Pin}^{-}(2) \rightarrow \mathrm{O}(2)$ is defined by

$$
\begin{gathered}
z \in \mathrm{U}(1) \subset \operatorname{Pin}^{-}(2) \mapsto z^{2} \in \mathrm{U}(1) \subset \mathrm{O}(2) \\
j \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{gathered}
$$

Definition $\operatorname{Spin}^{c_{-}}(n):=\operatorname{Spin}(n) \times_{\{ \pm 1\}} \operatorname{Pin}^{-}(2)$.

$$
1 \rightarrow\{ \pm 1\} \rightarrow \operatorname{Spin}^{c_{-}}(n) \rightarrow \mathrm{SO}(n) \times \mathrm{O}(2) \rightarrow 1
$$

Note. The id. compo. of $\operatorname{Spin}^{c_{-}}(n)$ is

$$
\operatorname{Spin}^{c}(n)=\operatorname{Spin}(n) \times_{\{ \pm 1\}} \mathrm{U}(1)
$$

Spin ${ }^{c_{-}}$-structures

- Let X be an oriented 4-manifold.
- Fix a Riemannian metric. $\longrightarrow \operatorname{Fr}(X)$: The $\mathrm{SO}(4)$-frame bundle.

Spin ${ }^{{ }^{c-} \text {-structure }}$
A Spin ${ }^{c-}$-structure on X is given by (P, τ) s.t.

- $P:$ a $\operatorname{Spin}^{c-}(4)$-bundle over X,
- $\tau: P / \mathrm{Pin}^{-}(2) \stackrel{\cong}{\rightrightarrows} \operatorname{Fr}(X)$.

Then we have

- $E=P / \operatorname{Spin}(4): \mathrm{O}(2)$-bundle over X,
- $\tilde{X}=P / \operatorname{Spin}^{c}(4):$ a double covering of X.

$$
\operatorname{det} E \cong \tilde{X} \times_{\{ \pm 1\}} \mathbb{R}=: \lambda
$$

Moduli spaces

- $(\tilde{P}, \tilde{\tau}): \mathrm{A} \operatorname{Spin}^{c}$-structure on \tilde{X}.
- $\tilde{P}:$ a $\operatorname{Spin}^{c}(4)$-bundle over \tilde{X},
- $\tilde{\tau}: \tilde{P} / \mathrm{U}(1) \xrightarrow{\cong} \operatorname{Fr}(\tilde{X})$
- $\tilde{\iota}: \tilde{P} \rightarrow \tilde{P}:$ a map covering $\tilde{X} \xrightarrow{(-1)} \tilde{X}$ s.t.

$$
\tilde{\iota}(p z)=\tilde{\iota}(p) z^{-1}, \text { for } z \in \mathrm{U}(1), \text { and } \tilde{\iota}^{2}=-1
$$

Let $\Delta^{ \pm}$be the complex spinor rep. of $\operatorname{Spin}^{c}(4)$. $\Rightarrow \exists j$-action on $\Delta^{ \pm}$s.t.

$$
j^{2}=-1, \text { and } j z=z^{-1} j \text { for } z \in \mathrm{U}(1)
$$

$\Rightarrow I=(\tilde{\iota}, j)$ is an antilinear involution on $\tilde{S}^{ \pm}=\tilde{P} \times{ }_{\operatorname{Spin}^{c}(4)} \Delta^{ \pm}$.
$\Rightarrow S^{ \pm}=\tilde{S}^{ \pm} / I$ over X is the spinor bundle for the $\operatorname{Spin}^{c_{-}}{ }_{- \text {str }}$.
$\Rightarrow S^{ \pm}$are NOT complex bundles.

Take the I-invariant part of the monopole map $\mu_{S W}$ on \tilde{X}.
$\Rightarrow \operatorname{Pin}^{-}(2)$-monopole map,

$$
\mu: \mathcal{A} \times \Gamma\left(S^{+}\right) \rightarrow \Omega^{+}(i \lambda) \times \Gamma\left(S^{-}\right)
$$

where $\lambda=\tilde{X} \times_{\{ \pm 1\}} \mathbb{R}$,

$$
\mathcal{A}=\{\mathrm{O}(2) \text {-connections on } E\} \leftarrow \text { an affine sp. of } \Omega^{1}(i \lambda)
$$

Symmetry

$$
\begin{aligned}
\mathcal{G} & =\left\{f \in \operatorname{Map}(\tilde{X}, \mathrm{U}(1)) \mid f(-x)=f(x)^{-1}\right\} \\
& =\Gamma\left(\tilde{X} \times_{\{ \pm 1\}} \mathrm{U}(1)\right),
\end{aligned}
$$

where $\{ \pm 1\} \curvearrowright \mathrm{U}(1)$ by $z \mapsto z^{-1}$.

- A basic fact due to [Furuta '08]:
$\exists \operatorname{Spin}^{c_{-}}$-structure on $(X, E) \Leftrightarrow w_{2}(X)=w_{2}(E)+w_{1}(E)^{2}$.
- If $E \cong \mathbb{R} \oplus \lambda=\underline{\mathbb{R}} \oplus\left(\tilde{X} \times_{\{ \pm 1\}} \mathbb{R}\right)$
$\Rightarrow P$ is reduced to $\operatorname{Spin}(4) \times_{\{ \pm 1\}}\langle \pm 1, \pm j\rangle$-bundle
\Rightarrow an analogy of spin structure.
$\Rightarrow \exists$ Larger symmetry

$$
\mathcal{G}^{\prime}=\Gamma\left(\tilde{X} \times_{\{ \pm 1\}} \operatorname{Pin}^{-}(2)\right),
$$

where $\{ \pm 1\} \curvearrowright \operatorname{Pin}^{-}(2)=\mathrm{U}(1) \cup j \mathrm{U}(1)$ is given by

$$
\begin{aligned}
& z \mapsto z^{-1} \quad \text { for } z \in \mathrm{U}(1), \\
& j \mapsto j .
\end{aligned}
$$

Moduli spaces

$$
\mathcal{M}=\mu^{-1}(0) / \mathcal{G} \subset\left(\mathcal{A} \times \Gamma\left(S^{+}\right)\right) / \mathcal{G}
$$

Proposition

- \mathcal{M} is compact.
- The virtual dimension of \mathcal{M} :

$$
d=\frac{1}{4}\left(\tilde{c}_{1}(E)^{2}-\operatorname{sign}(X)\right)-\left(b_{0}(X ; l)-b_{1}(X ; l)+b_{+}(X ; l)\right),
$$

where $\tilde{c}_{1}(E)$ is the twisted 1st Chern class.

- $\tilde{c}_{1}(E)$ is the Euler class of E considered in $H^{2}(X ; l)$ where $l \subset \lambda=\operatorname{det} E$, sub- \mathbb{Z}-bundle.
- If l is nontrivial \& X connected $\Rightarrow b_{0}(X ; l)=0$.

Reducibles

- For $(A, \phi) \in \mathcal{A} \times \Gamma\left(S^{+}\right)$, if $\phi \neq 0 \Rightarrow \mathcal{G}$-action is free.
- The stabilizer of $(A, 0)=\{ \pm 1\} \subset \mathcal{G}=\Gamma\left(\tilde{X} \times_{\{ \pm 1\}} \mathrm{U}(1)\right)$.
- The elements of the form $(A, 0)$ are called reducibles.
- In general, $\{$ reducible solutions $\} / \mathcal{G} \cong T^{b_{1}(X ; l)} \subset \mathcal{M}$.

Cf. In the SW-case, the stabilizer of $(A, 0)=S^{1} \subset \operatorname{Map}\left(X, S^{1}\right)$.

Key difference

Ordinary SW case

- Reducible \rightarrow The stabilizer $=S^{1}$.

$$
\begin{aligned}
\mathcal{M}_{S W} \backslash\{\text { reducibles }\} & \subset\left(\mathcal{A} \times\left(\Gamma\left(S^{+}\right) \backslash\{0\}\right)\right) / \mathcal{G}_{S W} \simeq B \mathcal{G}_{S W} \\
& \simeq T^{b_{1}(X)} \times \mathbb{C P}^{\infty}
\end{aligned}
$$

$\mathrm{Pin}^{-}(2)$-monopole case

- Reducible \rightarrow The stabilizer $=\{ \pm 1\}$.

$$
\begin{aligned}
\mathcal{M} \backslash\{\text { reducibles }\} & \subset\left(\mathcal{A} \times\left(\Gamma\left(S^{+}\right) \backslash\{0\}\right)\right) / \mathcal{G} \simeq B \mathcal{G} \\
& \simeq T^{b_{1}(X ; l)} \times \mathbb{R} \mathrm{P}^{\infty} .
\end{aligned}
$$

Proof of Theorem 1

Outline of the proof

- We will prove every characteristic element w of $Q_{X, l}$ satisfies

$$
\left|w^{2}\right| \geq \operatorname{rank} H^{2}(X ; l)
$$

by proving for every E,

$$
d=\operatorname{dim} \mathcal{M} \leq 0
$$

- Then Elkies' theorem implies $Q_{X, l}$ should be standard.
- An element w in a unimodular lattice L is called characteristic if $w \cdot v \equiv v \cdot v \bmod 2$ for $\forall v \in L$.
[Elkies '95]
$L \subset \mathbb{R}^{n}$: unimodular lattice. If \forall characteristic element $w \in L$ satisfies $\left|w^{2}\right| \geq \operatorname{rank} L, \Rightarrow L \cong$ diagonal.

The structure of \mathcal{M} when $b_{+}(X ; l)=0$

- Suppose a $\operatorname{Spin}^{c_{-}}$-structure (P, τ) on X is given.
- For simplicity, assume $b_{1}(X, l)=0$.
$\Rightarrow \exists^{1}$ reducible class $\rho_{0} \in \mathcal{M}$.
- Perturb the $\mathrm{Pin}^{-}(2)$-monopole equations by adding $\eta \in \Omega^{+}(i \lambda)$ to the curvature equation. $\rightarrow F_{A}^{+}=q(\phi)+\eta$.
- For generic $\eta, \mathcal{M} \backslash\left\{\rho_{0}\right\}$ is a d-dimensional manifold.
- Fix a small neighborhood $N\left(\rho_{0}\right)$ of $\left\{\rho_{0}\right\}$.

$$
\Rightarrow N\left(\rho_{0}\right) \cong \mathbb{R}^{d} /\{ \pm 1\}=\text { a cone of } \mathbb{R P}^{d-1}
$$

Then $\overline{\mathcal{M}}:=\overline{\mathcal{M} \backslash N\left(\rho_{0}\right)}$ is a compact d-manifold \& $\partial \overline{\mathcal{M}}=\mathbb{R} \mathrm{P}^{d-1}$.

Note $\overline{\mathcal{M}} \subset\left(\mathcal{A} \times\left(\Gamma\left(S^{+}\right) \backslash\{0\}\right)\right) / \mathcal{G}=: \mathcal{B}^{*}$.

- Recall $\mathcal{B}^{*} \underset{\text { h.e. }}{\simeq} T^{b_{1}(X ; l)} \times \mathbb{R P}^{\infty}$.

Lemma

If $b_{+}(X ; l)=0 \& b_{1}(X ; l)=0 \Rightarrow d=\operatorname{dim} \mathcal{M} \leq 0$.

Proof

- Suppose $d>0$.
- Recall $\overline{\mathcal{M}}$ is a compact d-manifold s.t. $\partial \overline{\mathcal{M}}=\mathbb{R} \mathrm{P}^{d-1}$.
- $\exists C \in H^{d-1}\left(\mathcal{B}^{*} ; \mathbb{Z} / 2\right) \cong H^{d-1}\left(\mathbb{R} P^{\infty} ; \mathbb{Z} / 2\right)$ s.t. $\langle C,[\partial \overline{\mathcal{M}}]\rangle \neq 0 . \Rightarrow$ Contradiction.
- Note $\operatorname{sign}(X)=b_{+}(X ; l)-b_{-}(X ; l)$ for any \mathbb{Z}-bundle l.
- By Lemma, if l is nontrivial $\& b_{+}(X ; l)=0 \& b_{1}(X ; l)=0$,

$$
\begin{aligned}
d & =\frac{1}{4}\left(\tilde{c}_{1}(E)^{2}-\operatorname{sign}(X)\right)-\left(b_{0}(X ; l)-b_{1}(X ; l)+b_{+}(X ; l)\right) \\
& =\frac{1}{4}\left(\tilde{c}_{1}(E)^{2}+b_{2}(X ; l)\right) \leq 0 .
\end{aligned}
$$

Note $\tilde{c}_{1}(E)^{2} \leq 0$ if $b_{+}(X ; l)=0$.

- Therefore, for any E which admits a Spin ${ }^{c-}$-structure,

$$
b_{2}(X ; l) \leq\left|\tilde{c}_{1}(E)^{2}\right|
$$

By varying E, we can prove every characteristic element w satisfies

$$
b_{2}(X ; l) \leq\left|w^{2}\right| .
$$

The outline of the proof of Theorem 2

- If $E=\underline{\mathbb{R}} \oplus \lambda \Rightarrow$ Spin $^{c-}$-structure on (X, E) has the larger symmetry $\mathcal{G}^{\prime}=\Gamma\left(\tilde{X} \times{ }_{\{ \pm 1\}} \operatorname{Pin}^{-}(2)\right)$.
- For simplicity, assume $b_{1}(X ; l)=0$.
- Then, by taking finite dimensional approximation of the monopole map, we obtain a proper \mathbb{Z}_{4}-equivariant map

$$
f: \tilde{\mathbb{R}}^{m} \oplus \mathbb{C}_{1}^{n+k} \rightarrow \tilde{\mathbb{R}}^{m+b} \oplus \mathbb{C}_{1}^{n}
$$

where

- $\tilde{\mathbb{R}}$ is \mathbb{R} on which \mathbb{Z}_{4} acts via $\mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2}=\{ \pm 1\} \curvearrowright \mathbb{R}$,
- \mathbb{C}_{1} is \mathbb{C} on which \mathbb{Z}_{4} acts by multiplication of i,
- $k=-\operatorname{sign}(X) / 8, b=b_{+}(X ; \lambda), m, n$ are some integers.

Here, \mathbb{Z}_{4} is generated by the constant section

$$
j \in \mathcal{G}^{\prime}=\Gamma\left(\tilde{X} \times_{\{ \pm 1\}} \operatorname{Pin}^{-}(2)\right) .
$$

- By using the techniques of equivariant homotopy theory, e.g., tom Dieck's character formula, we can see that any proper \mathbb{Z}_{4}-map of the form,

$$
f: \tilde{\mathbb{R}}^{m} \oplus \mathbb{C}_{1}^{n+k} \rightarrow \tilde{\mathbb{R}}^{m+b} \oplus \mathbb{C}_{1}^{n}
$$

should satisfy $b \geq k$.

- That is,

$$
b_{+}(X ; \lambda) \geq-\frac{1}{8} \operatorname{sign}(X) .
$$

Finite dimensional approximation

- Take a flat connection A_{0} on $\underline{\mathbb{R}} \oplus \lambda$.
$\operatorname{Pin}^{-}(2)$-monopole map

$$
\begin{gathered}
\mu: \Omega^{1}(i \lambda) \oplus \Gamma\left(S^{+}\right) \rightarrow\left(\Omega^{0} \oplus \Omega^{+}\right)(i \lambda) \oplus \Gamma\left(S^{-}\right)=: \mathcal{W}, \\
(a, \phi) \mapsto\left(d^{*} a, F_{A_{0}}+d^{+} a+q(\phi), D_{A_{0}+a} \phi\right) .
\end{gathered}
$$

- Let $l(a, \phi):=\left(d^{*} a, d^{+} a, D_{A_{0}} \phi\right)$ be the linear part of μ. $\rightarrow l$ is Fredholm.
- $c=\mu-l$: quadratic, compact.
- Choose a finite dim. subspace $U \subset \mathcal{W}$ s.t. $\operatorname{dim} U \gg 1$,

$$
U \supset(\mathrm{im} l)^{\perp}
$$

- Let $V:=l^{-1}(U) \& p: \mathcal{W} \rightarrow U$ be the L^{2}-projection.
- Define $f: V \rightarrow U$ by $f=l+p c$. $\rightarrow f$: proper, \mathbb{Z}_{4}-equiv.

The genus of embedded surfaces in 4-manifolds

Theorem

- X: closed ori. 4-manifold
- $c: ~$ Spin c-structure on X.
L : the determinant line bundle of c.
- $\Sigma \subset X$: connected embedded surface
s.t. $[\Sigma] \in H_{2}(X ; \mathbb{Z}),[\Sigma] \cdot[\Sigma] \geq 0$.

If $\operatorname{SW}(X, c) \neq 0$ or $\operatorname{BF}(X, c) \neq 0$, then

$$
-\chi(\Sigma)=2 g-2 \geq c_{1}(L)[\Sigma]+[\Sigma] \cdot[\Sigma]
$$

- This is due to: [Kronheimer-Mrowka], [Fintushel-Stern], [Morgan-Szabo-Taubes], [Ozsvath-Szabo], [Furuta-Kametani-Matsue-Minami]...

The genus of nonorientable embedded surfaces

- $\left(X^{4}, l\right)$ as before.

Let us consider a connected surface Σ s.t.

- $i: \Sigma \hookrightarrow X$: embedding
- The orientation coefficient of $\Sigma=i^{*} l$
$\rightarrow \exists$ Fundamental class $[\Sigma] \in H_{2}\left(\Sigma ; i^{*} l\right)$. Let $\alpha:=i_{*}[\Sigma] \in H_{2}(X ; l)$, where $i_{*}: H_{2}\left(\Sigma ; i^{*} l\right) \rightarrow H_{2}(X ; l)$.

Proposition

For $\forall \alpha \in H_{2}(X ; l)$, there exists Σ as above.
Remark

- Σ may be orientable or nonorientable.

The genus of embedded surfaces
Final remarks

Theorem 3.(N.)

- (X, l, Σ) as above.
- Let $\alpha:=i_{*}[\Sigma] \in H^{2}(X ; l)$. Suppose $\alpha \cdot \alpha \geq 0$.
- c : Spin $^{c_{-}-\text {structure s.t. } \operatorname{det} E} E l \otimes \mathbb{R}$.
- \tilde{c} : the Spin^{c}-structure on \tilde{X} induced from c.

If $\mathrm{SW}^{\mathrm{Pin}}(X, c) \neq 0$ or $\mathrm{BF}^{\mathrm{Pin}}(X, c) \neq 0$
or $\operatorname{SW}(\tilde{X}, \tilde{c}) \neq 0$ or $\operatorname{BF}(\tilde{X}, \tilde{c}) \neq 0$, then

$$
-\chi(\Sigma) \geq \tilde{c}_{1}(E) \cdot \alpha+\alpha \cdot \alpha
$$

Remark

- Σ : orientable $\Rightarrow-\chi(\Sigma)=2 g-2$.
- Σ : nonorientable $\Rightarrow-\chi(\Sigma)=g-1$.

Example

- X : Enriques surface

$$
\begin{aligned}
& \Rightarrow \pi_{1} X=\mathbb{Z} / 2 \\
& \Rightarrow \tilde{X}=K 3, l:=\tilde{X} \times_{\{ \pm 1\}} \mathbb{Z}, \lambda:=\tilde{X} \times_{\{ \pm 1\}} \mathbb{R} \\
& \Rightarrow \exists c: \operatorname{Spin}^{c-}-\text { structure s.t. } E \cong \mathbb{R} \oplus \lambda .\left(\tilde{c}_{1}(E)=0\right) \\
& \Rightarrow \operatorname{SW}^{\operatorname{Pin}}(X, c) \neq 0(\operatorname{SW}(\tilde{X}, \tilde{c}) \neq 0)
\end{aligned}
$$

For $\Sigma \stackrel{i}{\hookrightarrow} X$ s.t. $\alpha=i_{*}[\Sigma] \in H_{2}(X ; l) \& \alpha \cdot \alpha \geq 0$

$$
-\chi(\Sigma) \geq \alpha \cdot \alpha .
$$

Final remarks

- Pin $^{-}(2)$-monopole invariants
- Calculation, gluing formula, stable cohomotopy refinements
- When \tilde{X} : symplectic \& $I^{*} \omega=-\omega$,
$\mathrm{Pin}^{-}(2)$-monopole inv. $\underset{? ?}{=}$ real Gromov-Witten inv.
Cf. [Tian-Wang]
- $\mathrm{Pin}^{-}(2)$-monopole Floer theory?
$\mathrm{Pin}^{-}(2)$ Heegaard Floer theory?
- "Witten conjecture" for Pin^{-}(2)-monopole invariants?
- [Feehan-Leness] SW = Donaldson
$\mathrm{Pin}^{-}(2)$-monopole inv. $=$???

