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» Let X be a closed oriented 4-manifold.

Intersection form

Qx: H*(X;Z)/torsion x H*(X;Z)/torsion — Z,
(a,0) = (aUD, [X]).

> ()x is a symmetric bilinear unimodular form.

[J.H.C.Whitehead '49]

If 71X =1, the homotopy type of X is determined by the
isomorphism class of () x.
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In 4-dim. TOP

7TlX:1

[Freedman '82]
The homeo type of X is determined by
» the iso. class of QQx if (Qx is even,
> the iso. class of Qx & ks(X) if Qx is odd.

7TlX7él

If 71X is “Good" = Freedman theory + Surgery theory.
— Difficult.
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In 4-dim. DIFF

» Let X be a closed oriented smooth 4-manifold.

[Rohlin] If X is spin = sign(X) =0 mod 16.

[Donaldson| [ If Qx is definite = Qx ~ The diagonal form.

[Furuta] If X is spin & Qx is indefinite, then

10
ba(X) > §|sign(X)| + 2.
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Refinements, variants

[Furuta-Kametani '05]
The strong 10/8-inequality in the case when b;(X) > 0.

[Froyshov '10]
A local coefficient analogue of Donaldson’s theorem.

local coefficients « double coverings «+ H'(X;Z/2)
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Froyshov's results

4-manifolds and intersection forms with local coefficients, arXiv:1004.0077

» Suppose a double covering X — X is given.

> =X X {41} Z, a Z-bundle over X.
— H*(X;1): l-coefficient cohomology.

» Note [ ® [ = 7Z. The cup product
U: H*(X;1) x H*(X;1) — HY(X;Z) = Z,
induces the intersection form with local coefficient
Qx.: H*(X;1)/torsion x H*(X;1)/torsion — Z.

> (Qx is also a symmetric bilinear unimodular form.
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A special case of Froyshov's theorem

» X: a closed connected oriented smooth 4-manifold s.t.
b (X) + dimg s (torH, (X;Z) @ Z/2) < 2. (1)

» [ — X: a nontrivial Z-bundle.

If Qx is definite = ()x; ~ diagonal.

» The original form of Froyshov's theorem is:

If X with 0X =Y : ZHS? satisfies (1)
& ()x, is nonstandard definite
= 0o: HF*(Y;Z/2) — Z/2 is non-zero.
» Y =53 = HFYY;Z/2) = 0 =The above result.
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» The proof uses the moduli space of SO(3)-instantons on a
SO(3)-bundle V.

» Twisted reducibles (stabilizer = Z/2) play an important role.
V is reduced to A @ E, where F is an O(2)-bundle,

A = det E: a nontrivial R-bundle.

Cf [Fintushel-Stern'84] gives an alternative proof of Donaldson's
theorem by using SO(3)-instantons.
—— Abelian reducibles (stabilizer = U(1))
V' is reduced to R @ L, where L is a U(1)-bundle.

- Donaldson’s theorem is proved by Seiberg-Witten theory, too.

Question
Can we prove Froyshov's result by Seiberg-Witten theory?

—— Qur result would be an answer.
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Main results
Theorem 1.(N.)

» X: a closed connected ori. smooth 4-manifold.

» [ — X: a nontrivial Z-bdl. s.t. w1(\)? =0, where A\ = [ ®@ R.

If Qx,; is definite = ()x; ~ diagonal.

Cf. Froyshov's theorem

> X: — st b7 (X) 4 dimg o (torH (X;Z) ® Z/2) < 2.
» [ — X: a nontrivial Z-bundle.

If Qx, is definite = ()x; ~ diagonal.

Nobuhiro Nakamura Pin ™ (2)-monopole equations and its applications



Introduction :
Froyshov's results

Main results
Applications

Main results
Theorem 1.(N.)

» X: a closed connected ori. smooth 4-manifold.
» [ — X: a nontrivial Z-bdl. s.t. w1(\)? =0, where A\ = [ @ R.

If Qx, is definite = (Qx; ~ diagonal.

» For the proof, we will introduce a variant of Seiberg-Witten
equations
— Pin™ (2)-monopole equations on Spin®--structures on X.

> Spin“ -structure is a Pin™ (2)-variant of Spin®-str. defined by
M.Furuta, whose complex structure is “twisted along [".
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» The moduli space of Pin™ (2)-monopoles is compact.
—— Bauer-Furuta theory can be developed.

Furuta's theorem
Let X be a closed ori. smooth spin 4-manifold with indefinite () x .

bo(x) > -]

Theorem 2(N.)

Let X be a closed connected ori. smooth 4-manifold. For any
nontrivial Z-bundle I — X s.t. wi(\)? = wa(X), where A = [ ® R,

_ sign(X)

by (X;A) > s

where by (X;\) = rank HT(X; \).
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Applications

Recall fundamental theorems.
1. [Rohlin] X*: closed spin = sign(X) = 0 mod 16.
2. [Donaldson| Definite = diagonal.
3. [Furuta] The 10/8-inequality

3" [Furuta-Kametani] The strong 10/8-inequality in the case
when b; > 0.

Corollary 1(N.)

3 Nonsmoothable closed indefinite spin 4-manifolds satisfying
» sign(X) =0 mod 16,
> the strong 10/8-inequality.
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Proof

> Let M be T* or T? x S?. = Qps =3H, Qrov g2 = H.

» If I’ — M is any nontrivial Z-bundle,
= bo(M;1') =0 & w1 (I' @ R)? = 0.

» Let V be a topological 4-manifold s.t. mV =1, Qy is even
and definite, sign(V') = 0 mod 16. (= V is spin.)

» Choose a large k s.t. X = V#EkM satisfies the strong
10/8-inequality.

> Let l :=Z#kl — X. = Qx1=Qv, w1 (1 ®R)2 = 0.

» Suppose X is smooth. By Theorem 1,
Qx,; = Qv ~ diagonal. Contradiction.

Remark
Similar examples can be constructed by using Theorem 2.
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Non-spin manifolds

10/8-conjecture

Every non-spin closed smooth 4-manifold X with even form

satisfies 10
(X)) > | sign(X)|.

[Bohr,’02],[Lee-Li,"00]

If the 2-torsion part of H{(X;Z) is Z/2" or Z./2 & Z./2

= the 10/8-conjecture is true.

Corollary 2(N.)

3 Nonsmoothable non-spin 4-manifolds X with even form s.t.
> the 2-torsion part of Hy(X;7Z) = 7Z/2,

> the 10/8-conjecture is true.
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Review on the Seiberg-Witten theory

» X: a closed ori. smooth 4-manifold with a Rimaniann metric.

» Suppose a Spin®-structure on X is given.
Spin“(4) = Spin(4) x4y U(1)
— L: the determinant U(1)-bundle.

» Monopole map
psw: A(L) x T(S%) — QF x (S7),

where A(L): the space of U(1)-connections on L,
SE: spinor bundles.

» solutions of SW-eqn < zero points of ugy .

> usw is Gsw-equivariant, where | Ggyr = Map(X, U(1)).
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Moduli spaces

> The moduli space g5 (0)/Gsw .
» Restriction to intersection forms
» SWe-invariants € Z

» Bauer-Furuta invariants € a stable cohomotopy group

Nobuhiro Nakamura Pin~ (2)-monopole equations and its applications

Pin™ (2)-monopole theory Spin®— -structures

Moduli spaces

Overview of Pin™ (2)-monopole theory

» Spin“ -structure on X
Spin“~(4) = Spin(4) x4y Pin™(2) (Pin™(2) = U(1)UjU(1))
— FE: O(2)-bundle

» Pin™ (2)-monopole map
Iu: A(E) X F(S+) — Q+('I/)\) X F(S_),

where A(E): the space of O(2)-connections on E,
S*: spinor bundles,
A =det E.

» 1 is G-equivariant, where
G =T(E xo(2) U(1)).
where O(2) — {&1} ~ U(1) by 2z — 2z 1.
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» The moduli space 1 ~1(0)/G.

» Restriction to intersection forms with local coefficients
— Today's topic

» Pin™ (2)-monopole SW-inv. € Zs or Z

» Pin™ (2)-monopole BF-inv. € a stable cohomotopy group
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Spin“~ (n)-groups
Pin™(2) = (U(1),4) = U(1) U U(1) C Sp(1) C H.
The two-to-one homomorphism Pin™ (2) — O(2) is defined by
zcU(l) c Pin (2) — 2% € U(1) C O(2),

L 1 0
77 \o0 1)

Definition Spin“=(n) := Spin(n) x (413 Pin™(2).

1 — {+1} — Spin“~(n) — SO(n) x O(2) — 1.
Note. The id. compo. of Spin®~(n) is

Spin“(n) = Spin(n) X413 U(1).
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Spin“--structures

» Let X be an oriented 4-manifold.

» Fix a Riemannian metric.
— Fr(X): The SO(4)-frame bundle.

Spin“~-structure
A Spin®~-structure on X is given by (P, 7) s.t.
» P: a Spin®-(4)-bundle over X,

» 7: P/Pin~(2) = Fr(X).
Then we have

» E = P/Spin(4): O(2)-bundle over X,
» X = P/Spin°(4): a double covering of X.

det B~ X X{:I:l}R:: A
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The following data (15,%,5) on X gives a Spin“~-structure on X.
» (P,7): A Spin®structure on X.
> P: a Spin‘(4)-bundle over X,
» 7: P/U(1) S Fr(X)
»i:P— P:a map covering X (_—1)> X st
i[(pz) = i(p)z~*, for z € U(1), and i* = —1.

Let A* be the complex spinor rep. of Spin®(4).
= Jj-action on A¥ s.t.

j?=—1, and jz = 271 for z € U(1)

= I = (i,7) is an antilinear involution on S* = P X Spin© (4) AT
= S+ = S§* /T over X is the spinor bundle for the Spin°~-str.
= ST are NOT complex bundles.
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Take the I-invariant part of the monopole map gy on X.
= Pin™ (2)-monopole map,

p: AxT(ST) — QTN x T(S7),

where A = X X+11 R,
A = {O(2)-connections on E} « an affine sp. of Q!(i)\)

Symmetry

G ={f € Map(X,U(1))| f(—z) = f(z)~"}
=I'(X x 413 U(1)),

where {1} ~ U(1) by 2z — 271
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» A basic fact due to [Furuta '08]:
3 Spin“--structure on (X, E) < wy(X) = we(F) + w1 (E)?.

> fFEZROGA=R® (X x11 R)
= P is reduced to Spin(4) X ;41 (£1, £j)-bundle
= an analogy of spin structure.
= dLarger symmetry

G' =T(X xqi1y Pin™(2)),
where {£1} ~ Pin™(2) = U(1) U5 U(1) is given by

z—z b for z € U(D),
J =7
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Moduli spaces
M =p70)/G C (AxT(5T))/G
Proposition
» M is compact.
» The virtual dimension of M:

4= 3@ (B) —sign(X)) — (o(X:1) — bi(X:1) + b (X:1)),

where ¢1(F) is the twisted 1st Chern class.

> ¢1(E) is the Euler class of E considered in H?(X;1)
where [ C A\ = det E, sub-Z-bundle.

» If [ is nontrivial & X connected = by(X;1) = 0.
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Reducibles

For (A,¢) € AxT'(ST), if ¢ # 0 = G-action is free.
The stabilizer of (A4,0) = {£1} C G = I'(X x4, U(1)).
The elements of the form (A, 0) are called reducibles.
In general, { reducible solutions }/G = T01(X30) < M.

Cf. In the SW-case, the stabilizer of (4,0) = S c Map(X, S1).
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Key difference
Ordinary SW case
» Reducible — The stabilizer = S*.

Mg \ {reducibles} c(A x (I'(ST)\ {0}))/Gsw ~ BGsw
~ T0(X) » CP° .

Pin™ (2)-monopole case

» Reducible — The stabilizer = {+1}.

M\ {reducibles} c(A x (I'(ST) \ {0}))/G ~ BG
~ TOED  RP>
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Proof of Theorem 1
Outline of the proof
» We will prove every characteristic element w of ()x; satisfies
lw?| > rank H?(X;1),
by proving for every F,
d =dim M <0.
» Then Elkies’ theorem implies () x; should be standard.

- An element w in a unimodular lattice L is called characteristic
ifw-v=v-v mod 2 for Vv € L.

[Elkies '95]
L C R™: unimodular lattice. If Vcharacteristic element w € L
satisfies |w?| > rank L, = L = diagonal.
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The structure of M when b, (X;1) =0

» Suppose a Spin“-structure (P, 7) on X is given.

» For simplicity, assume b1 (X, 1) = 0.
= 3! reducible class pg € M.

» Perturb the Pin™ (2)-monopole equations by adding
n € QT (i)) to the curvature equation. — Ff = q(¢) + .

» For generic n, M\ {po} is a d-dimensional manifold.
» Fix a small neighborhood N (pg) of {po}-.
= N(py) 2 R?/{£1} = a cone of RP¢!

Then M := M\ N(po) is a compact d-manifold &
OM =RpP4 .

Nobuhiro Nakamura Pin~ (2)-monopole equations and its applications

Proof of Theorem 1
Proof of Theorem 1 & 2 Proof of Theorem 2

Nobuhiro Nakamura Pin ™ (2)-monopole equations and its applications



Proof of Theorem 1
Proof of Theorem 1 & 2 Proof of Theorem 2

» Note M C (A x (T(ST)\ {0})) /G =: B*.

» Recall B* h: Th1 (X)) « RP®,

Lemma
If b (X;0) =0& b1(X;])=0=d=dimM <0.

Proof

» Suppose d > 0.

» Recall M is a compact d-manifold s.t. M = RP4 1.

» 3C € H¥*Y(B*;Z/2) = H*1(RP*;Z/2) s.t.
(C,[OM]) # 0. = Contradiction.
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» Note sign(X) = b, (X;1) — b_(X;!) for any Z-bundle [.
» By Lemma, if [ is nontrivial & b, (X;1) =0 & b1(X;1) =0,

d :1(51(]5)2 — sign(X)) — (bo(X;1) — b1 (X;1) + by (X51))
= (@) + ba(X:1) <0,

Note ¢1(F)? < 0if b (X;1) = 0.

» Therefore, for any E which admits a Spin“~-structure,
bo(X;1) < |E1(E)?|.
By varying E, we can prove every characteristic element w satisfies

bo(X;1) < |Jw?|.
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The outline of the proof of Theorem 2

> If E =R ® A\ = Spin“ -structure on (X, F) has the larger
symmetry G/ = I'(X X (413 Pin™(2)).

» For simplicity, assume by (X;1) = 0.

» Then, by taking finite dimensional approximation of the
monopole map, we obtain a proper Z4-equivariant map

f:R™ @ CMF o R g Y,

where
» R is R on which Z4 acts via Zy — Zs = {£1} ~ R,
» C; is C on which Z,4 acts by multiplication of 7,
» k= —sign(X)/8, b =">b4(X;\), m,n are some integers.

Here, Z, is generated by the constant section

j - Q’ = F(X X{il} Pin— (2))
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» By using the techniques of equivariant homotopy theory, e.g.,
tom Dieck’s character formula, we can see that any proper
Z.4-map of the form,

f:R™ @ CMF - R g Y,

should satisfy b > k.

» Thatis, .
by (X;N) > ~3 sign(X).
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Finite dimensional approximation

» Take a flat connection Ag on R & A.

Pin™(2)-monopole map

p: QEN) @ T(ST) — (@ QN (EN) @ T(S™) = W,
(a,¢) — (da, Fa, + d*a+ q(9), DA0+CL¢)'

> Let i(a,¢) := (d*a,d"a, Da,¢) be the linear part of u.
— [ is Fredholm.
» ¢ = u — [: quadratic, compact.
» Choose a finite dim. subspace U C W s.t. dimU > 1,
U D (iml)*
Let V :=1"Y(U) & p: W — U be the L?-projection.
» Define f: V —U by |f =101+ pc.|— [: proper, Zs-equiv.
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The genus of embedded surfaces in 4-manifolds
Theorem

» X: closed ori. 4-manifold

» c: Spin®-structure on X.
L: the determinant line bundle of c.

» > C X: connected embedded surface
s.t. [X] € Ho(X;Z), [X]-[X] = 0.

If SW(X,c) # 0 or BF(X,¢) # 0, then
—x(X) =29 -2 > a(L)[X] + [X] - [X].

» This is due to: [Kronheimer-Mrowka], [Fintushel-Stern],
[Morgan-Szabo-Taubes], [Ozsvath-Szabo],

[Furuta-Kametani-Matsue-Minami]...
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The genus of nonorientable embedded surfaces

> (X%,1) as before.
Let us consider a connected surface X s.t.
» 7: X — X: embedding

» The orientation coefficient of > = %[

— dFundamental class [X] € Hy(X;4%1).
Let v := i, [X] € Ho(X;1), where i, : Ho(3;0*1) — Ho(X;1).

Proposition
For Vao € Ho(X;1), there exists X as above.
Remark

» > may be orientable or nonorientable.
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Theorem 3.(N.)
> (X,[,X) as above.
> Let o :=i,[¥] € H*(X;I). Suppose a - a > 0.
» c: Spin“~-structure s.t. det £ = [ ® R.

» ¢ the Spin®structure on X induced from c.

If SW™ (X, ¢) # 0 or BE"™(X,c) #0
or SW(X,¢) # 0 or BF(X,¢) # 0, then

—x(X)>ca(F) - a+a-«a

Remark

> > orientable = —x(X) =29 — 2.
» 3: nonorientable = —x(X) =g — 1,

Nobuhiro Nakamura Pin ™ (2)-monopole equations and its applications



The genus of embedded surfaces
Final remarks
Recent results

Example

» X: Enriques surface
= mX =7Z/2
= X =K3,1:=X X1y 2, A:=X x1 R
= Jc: Spin®-structure s.t. E =R @ A (¢1(F) =0)
= SWPIR (X, ¢) #£ 0 (SW(X,¢) # 0)

For ¥ <% X st. a=1i2] € Ho(X;l) & a-a>0

—xX) > a-a.
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Final remarks

» Pin™ (2)-monopole invariants
» Calculation, gluing formula, stable cohomotopy refinements

» When X: symplectic & [*w = —w,

Pin™ (2)-monopole inv. = real Gromov-Witten inv.

Cf. [Tian-Wang]
» Pin™(2)-monopole Floer theory?
Pin™(2) Heegaard Floer theory?

> “Witten conjecture” for Pin™ (2)-monopole invariants?
> [Feehan-Leness] SW = Donaldson

Pin™ (2)-monopole inv. = 777
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