$\operatorname{Pin}^-(2)$ -monopole equations and its applications

Nobuhiro Nakamura

The University of Tokyo

Sep 28, 2011

Nobuhiro Nakamura

 $\operatorname{Pin}^-(2)$ -monopole equations and its applications

Introduction $Pin^{-}(2)$ -monopole theory Proof of Theorem 1 & 2 Recent results

Introduction

Froyshov's results Main results Applications

 $Pin^{-}(2)$ -monopole theory

 $\mathrm{Spin}^{c_-} ext{-structures}$ Moduli spaces

Proof of Theorem 1 & 2

Proof of Theorem 1 Proof of Theorem 2

Recent results

The genus of embedded surfaces Final remarks ► Let X be a closed oriented 4-manifold.

Intersection form

$$Q_X \colon H^2(X;\mathbb{Z})/\text{torsion} \times H^2(X;\mathbb{Z})/\text{torsion} \to \mathbb{Z},$$
$$(a,b) \mapsto \langle a \cup b, [X] \rangle.$$

• Q_X is a symmetric bilinear unimodular form.

[J.H.C.Whitehead '49]

If $\pi_1 X = 1$, the homotopy type of X is determined by the isomorphism class of Q_X .

In 4-dim. TOP

$$\pi_1 X = 1$$

[Freedman '82]

The homeo type of X is determined by

- the iso. class of Q_X if Q_X is even,
- the iso. class of $Q_X \& \operatorname{ks}(X)$ if Q_X is odd.

$\underline{\pi_1 X \neq 1}$

If $\pi_1 X$ is "Good" \Rightarrow Freedman theory + Surgery theory. \rightarrow Difficult.

In 4-dim. DIFF

• Let X be a closed oriented smooth 4-manifold.

[Rohlin] If X is spin
$$\Rightarrow$$
 sign $(X) \equiv 0 \mod 16$.
[Donaldson] If Q_X is definite $\Rightarrow Q_X \sim$ The diagonal form.

[Furuta] If X is spin & Q_X is indefinite, then

$$b_2(X) \ge \frac{10}{8}|\operatorname{sign}(X)| + 2.$$

Nobuhiro Nakamura $\operatorname{Pin}^-(2)$ -monopole equations and its applications

Refinements, variants

[Furuta-Kametani '05]

The strong 10/8-inequality in the case when $b_1(X) > 0$.

[Froyshov '10]

A local coefficient analogue of Donaldson's theorem.

local coefficients \leftrightarrow double coverings \leftrightarrow $H^1(X; \mathbb{Z}/2)$

Froyshov's results

4-manifolds and intersection forms with local coefficients, arXiv:1004.0077

- Suppose a double covering $\tilde{X} \to X$ is given.
- ▶ $l := \tilde{X} \times_{\{\pm 1\}} \mathbb{Z}$, a \mathbb{Z} -bundle over X. $\longrightarrow H^*(X; l)$: *l*-coefficient cohomology.
- ▶ Note $l \otimes l = \mathbb{Z}$. The cup product

 $\cup \colon H^2(X;l) \times H^2(X;l) \to H^4(X;\mathbb{Z}) \cong \mathbb{Z},$

induces the intersection form with local coefficient

 $Q_{X,l} \colon H^2(X;l) / \text{torsion} \times H^2(X;l) / \text{torsion} \to \mathbb{Z}.$

• $Q_{X,l}$ is also a symmetric bilinear unimodular form.

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and its applications
Introduction Pin ⁻ (2)-monopole theory Proof of Theorem 1 & 2 Recent results	Froyshov's results Main results Applications

A special case of Froyshov's theorem

• X: a closed connected oriented smooth 4-manifold s.t.

$$b^{+}(X) + \dim_{\mathbb{Z}/2}(\operatorname{tor} H_{1}(X;\mathbb{Z}) \otimes \mathbb{Z}/2) \leq 2.$$
 (1)

• $l \rightarrow X$: a nontrivial \mathbb{Z} -bundle.

If $Q_{X,l}$ is definite $\Rightarrow Q_{X,l} \sim \text{diagonal}$.

The original form of Froyshov's theorem is:
If X with ∂X = Y : ZHS³ satisfies (1) & Q_{X,l} is nonstandard definite ⇒ δ₀: HF⁴(Y; Z/2) → Z/2 is non-zero.
Y = S³ ⇒ HF⁴(Y; Z/2) = 0 ⇒The above result.

Froyshov's results

Introduction

Recent results

 $\operatorname{Pin}^{-}(2)$ -monopole theory Proof of Theorem 1 & 2

• Twisted reducibles (stabilizer $\cong \mathbb{Z}/2$) play an important role. V is reduced to $\lambda \oplus E$, where E is an O(2)-bundle,

 $\lambda = \det E$: a nontrivial \mathbb{R} -bundle.

Cf [Fintushel-Stern'84] gives an alternative proof of Donaldson's theorem by using SO(3)-instantons.

 \longrightarrow Abelian reducibles (stabilizer \cong U(1))

V is reduced to $\underline{\mathbb{R}} \oplus L$, where L is a $\mathrm{U}(1)$ -bundle.

- Donaldson's theorem is proved by Seiberg-Witten theory, too.

Question

Can we prove Froyshov's result by Seiberg-Witten theory?

 \longrightarrow Our result would be an answer.

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and its applications
Introduction Pin ⁻ (2)-monopole theory Proof of Theorem 1 & 2 Recent results	Froyshov's results Main results Applications

Main results

Theorem 1.(N.)

- X: a closed connected ori. smooth 4-manifold.
- ▶ $l \to X$: a nontrivial \mathbb{Z} -bdl. s.t. $w_1(\lambda)^2 = 0$, where $\lambda = l \otimes \mathbb{R}$.

If
$$Q_{X,l}$$
 is definite $\Rightarrow Q_{X,l} \sim \text{diagonal}$.

Cf. Froyshov's theorem

- ▶ X: s.t. $b^+(X) + \dim_{\mathbb{Z}/2}(\operatorname{tor} H_1(X;\mathbb{Z}) \otimes \mathbb{Z}/2) \leq 2$.
- ▶ $l \rightarrow X$: a nontrivial \mathbb{Z} -bundle.

If
$$Q_{X,l}$$
 is definite $\Rightarrow Q_{X,l} \sim \text{diagonal}$.

Main results

Theorem 1.(N.)

- X: a closed connected ori. smooth 4-manifold.
- ▶ $l \to X$: a nontrivial \mathbb{Z} -bdl. s.t. $w_1(\lambda)^2 = 0$, where $\lambda = l \otimes \mathbb{R}$.

If $Q_{X,l}$ is definite $\Rightarrow Q_{X,l} \sim \text{diagonal}$.

 For the proof, we will introduce a variant of Seiberg-Witten equations

 $\longrightarrow \operatorname{Pin}^{-}(2)$ -monopole equations on $\operatorname{Spin}^{c_{-}}$ -structures on X.

 Spin^c-structure is a Pin⁻(2)-variant of Spin^c-str. defined by M.Furuta, whose complex structure is "twisted along *l*".

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and its applications
${\sf Introduction} \ {\sf Pin}^-(2){\sf -}{\sf monopole theory} \ {\sf Proof of Theorem 1 \& 2} \ {\sf Recent results}$	Froyshov's results Main results Applications

• The moduli space of $Pin^{-}(2)$ -monopoles is compact. \longrightarrow Bauer-Furuta theory can be developed.

Furuta's theorem

Let X be a closed ori. smooth spin 4-manifold with indefinite Q_X .

$$b_+(X) \ge -\frac{\operatorname{sign}(X)}{8} + 1.$$

Theorem 2(N.)

Let X be a closed connected ori. smooth 4-manifold. For any nontrivial \mathbb{Z} -bundle $l \to X$ s.t. $w_1(\lambda)^2 = w_2(X)$, where $\lambda = l \otimes \mathbb{R}$,

$$b_+(X;\lambda) \ge -\frac{\operatorname{sign}(X)}{8},$$

where $b_+(X;\lambda) = \operatorname{rank} H^+(X;\lambda)$.

Applications

Recall fundamental theorems.

- 1. [Rohlin] X^4 : closed spin \Rightarrow sign $(X) \equiv 0 \mod 16$.
- 2. [Donaldson] Definite \Rightarrow diagonal.
- 3. [Furuta] The 10/8-inequality
- 3' [Furuta-Kametani] The strong 10/8-inequality in the case when $b_1 > 0$.

Corollary 1(N.)

 \exists Nonsmoothable closed indefinite spin 4-manifolds satisfying

- $\operatorname{sign}(X) \equiv 0 \mod 16$,
- ▶ the strong 10/8-inequality.

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and its applications
Introduction Pin ⁻ (2)-monopole theory Proof of Theorem 1 & 2 Recent results	Froyshov's results Main results Applications

Proof

- Let M be T^4 or $T^2 \times S^2$. $\Rightarrow Q_{T^4} = 3H$, $Q_{T^2 \times S^2} = H$.
- If $l' \to M$ is any nontrivial \mathbb{Z} -bundle, $\Rightarrow b_2(M; l') = 0 \& w_1(l' \otimes \mathbb{R})^2 = 0.$
- Let V be a topological 4-manifold s.t. $\pi_1 V = 1$, Q_V is even and definite, $\operatorname{sign}(V) \equiv 0 \mod 16$. ($\Rightarrow V \text{ is spin.}$)
- Choose a large k s.t. X = V#kM satisfies the strong 10/8-inequality.
- Let $l := \underline{\mathbb{Z}} \# kl' \to X$. $\Rightarrow Q_{X,l} = Q_V$, $w_1(l \otimes \mathbb{R})^2 = 0$.
- Suppose X is smooth. By Theorem 1, $Q_{X,l} = Q_V \sim \text{diagonal. Contradiction.}$

Remark

Similar examples can be constructed by using Theorem 2.

Froyshov's result Main results Applications

Non-spin manifolds

10/8-conjecture

Every non-spin closed smooth 4-manifold X with even form satisfies

$$b_2(X) \ge \frac{10}{8}|\operatorname{sign}(X)|.$$

[Bohr,'02],[Lee-Li,'00]

If the 2-torsion part of $H_1(X;\mathbb{Z})$ is $\mathbb{Z}/2^i$ or $\mathbb{Z}/2 \oplus \mathbb{Z}/2$ \Rightarrow the 10/8-conjecture is true.

Corollary 2(N.)

 \exists Nonsmoothable non-spin 4-manifolds X with even form s.t.

- the 2-torsion part of $H_1(X;\mathbb{Z}) \cong \mathbb{Z}/2$,
- ▶ the 10/8-conjecture is true.

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and its applications
Introduction Pin ⁻ (2)-monopole theory Proof of Theorem 1 & 2 Recent results	${ m Spin}^{c-}$ -structures Moduli spaces

Review on the Seiberg-Witten theory

- \blacktriangleright X: a closed ori. smooth 4-manifold with a Rimaniann metric.
- Suppose a Spin^c-structure on X is given. Spin^c(4) = Spin(4) ×_{±1} U(1) → L: the determinant U(1)-bundle.
- Monopole map

$$\mu_{SW} \colon \mathcal{A}(L) \times \Gamma(S^+) \to \Omega^+ \times \Gamma(S^-),$$

where $\mathcal{A}(L)$: the space of $\mathrm{U}(1)\text{-connections}$ on L, $S^{\pm}:$ spinor bundles.

- ▶ solutions of SW-eqn \leftrightarrow zero points of μ_{SW} .
- μ_{SW} is \mathcal{G}_{SW} -equivariant, where $\mathcal{G}_{SW} = Map(X, U(1))$.

Pin⁻(2)-monopole theory Proof of Theorem 1 & 2 Recent results

 ${{\rm Spin}}^{c-}$ -structures Moduli spaces

- The moduli space $\mu_{SW}^{-1}(0)/\mathcal{G}_{SW}$.
- Restriction to intersection forms
- SW-invariants $\in \mathbb{Z}$
- Bauer-Furuta invariants \in a stable cohomotopy group

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and its applications
Introduction Pin ⁻ (2)-monopole theory Proof of Theorem 1 & 2 Recent results	${ m Spin}^{c-}$ -structures Moduli spaces

Overview of $Pin^{-}(2)$ -monopole theory

- ▶ Spin^{*c*}-structure on X Spin^{*c*}-(4) = Spin(4) ×{±1} Pin⁻(2) (Pin⁻(2) = U(1) ∪ j U(1)) → E: O(2)-bundle
- ▶ $Pin^{-}(2)$ -monopole map

$$\mu \colon \mathcal{A}(E) \times \Gamma(S^+) \to \Omega^+(i\lambda) \times \Gamma(S^-),$$

where $\mathcal{A}(E)$: the space of O(2)-connections on E, S^{\pm} : spinor bundles, $\lambda = \det E$.

• μ is *G*-equivariant, where

$$\label{eq:G} \begin{split} \mathcal{G} &= \Gamma(E\times_{\mathrm{O}(2)}\mathrm{U}(1)). \end{split}$$
 where $\mathrm{O}(2) \to \{\pm 1\} \curvearrowright \mathrm{U}(1)$ by $z \mapsto z^{-1}.$

Introduction Pin⁻(2)-monopole theory Proof of Theorem 1 & 2 Recent results

 ${{\rm Spin}}^{c-}$ -structures Moduli spaces

- The moduli space $\mu^{-1}(0)/\mathcal{G}$.
- Restriction to intersection forms with local coefficients
 → Today's topic
- ▶ $\operatorname{Pin}^{-}(2)$ -monopole SW-inv. $\in \mathbb{Z}_2$ or \mathbb{Z}
- ▶ $Pin^{-}(2)$ -monopole BF-inv. \in a stable cohomotopy group

Nobuniro Nakamura	P1In (2)-monopole equations and its applications
Introduction Pin ⁻ (2)-monopole theory Proof of Theorem 1 & 2 Recent results	Spin ^{c –} -structures Moduli spaces

$\operatorname{Spin}^{c_{-}}(n)$ -groups

$$\operatorname{Pin}^{-}(2) = \langle \mathrm{U}(1), j \rangle = \mathrm{U}(1) \cup j \, \mathrm{U}(1) \subset \operatorname{Sp}(1) \subset \mathbb{H}.$$

The two-to-one homomorphism $\mathrm{Pin}^-(2) \to \mathrm{O}(2)$ is defined by

$$z \in \mathrm{U}(1) \subset \mathrm{Pin}^{-}(2) \mapsto z^{2} \in \mathrm{U}(1) \subset \mathrm{O}(2),$$
$$j \mapsto \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}.$$

Definition $\operatorname{Spin}^{c_{-}}(n) := \operatorname{Spin}(n) \times_{\{\pm 1\}} \operatorname{Pin}^{-}(2).$

$$1 \to \{\pm 1\} \to \operatorname{Spin}^{c_{-}}(n) \to \operatorname{SO}(n) \times \operatorname{O}(2) \to 1.$$

Note. The id. compo. of $\text{Spin}^{c_{-}}(n)$ is

$$\operatorname{Spin}^{c}(n) = \operatorname{Spin}(n) \times_{\{\pm 1\}} \operatorname{U}(1).$$

$\operatorname{Spin}^{c_{-}}$ -structures

- Let X be an oriented 4-manifold.
- Fix a Riemannian metric. $\longrightarrow Fr(X)$: The SO(4)-frame bundle.

$\mathrm{Spin}^{c_{-}}$ -structure

A Spin^{c-}-structure on X is given by (P, τ) s.t.

- ▶ P: a Spin^{c_-}(4)-bundle over X,
- ▶ $\tau: P/\operatorname{Pin}^{-}(2) \xrightarrow{\cong} Fr(X).$

Then we have

- E = P/Spin(4): O(2)-bundle over X,
- $\tilde{X} = P/\operatorname{Spin}^{c}(4)$: a double covering of X.

$$\det E \cong \tilde{X} \times_{\{\pm 1\}} \mathbb{R} =: \lambda.$$

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and its applications

Introduction Pin ⁻ (2)-monopole theory Proof of Theorem 1 & 2 Recent results	${ m Spin}^{c-}$ -structures Moduli spaces
--	---

The following data $(\tilde{P}, \tilde{\tau}, \tilde{\iota})$ on \tilde{X} gives a $\operatorname{Spin}^{c_{-}}$ -structure on X.

- $(\tilde{P}, \tilde{\tau})$: A Spin^c-structure on \tilde{X} .
 - \tilde{P} : a Spin^c(4)-bundle over \tilde{X} , • $\tilde{\tau}: \tilde{P}/\mathrm{U}(1) \xrightarrow{\cong} Fr(\tilde{X})$
- $\tilde{\iota} \colon \tilde{P} \to \tilde{P}$: a map covering $\tilde{X} \xrightarrow{(-1)} \tilde{X}$ s.t.

$$\tilde{\iota}(pz) = \tilde{\iota}(p)z^{-1}$$
, for $z \in U(1)$, and $\tilde{\iota}^2 = -1$.

Let Δ^{\pm} be the complex spinor rep. of $\operatorname{Spin}^{c}(4)$. $\Rightarrow \exists j$ -action on Δ^{\pm} s.t.

$$j^2 = -1$$
, and $jz = z^{-1}j$ for $z \in \mathrm{U}(1)$

 $\Rightarrow I = (\tilde{\iota}, j) \text{ is an antilinear involution on } \tilde{S}^{\pm} = \tilde{P} \times_{\mathrm{Spin}^{c}(4)} \Delta^{\pm}.$ $\Rightarrow S^{\pm} = \tilde{S}^{\pm}/I \text{ over } X \text{ is the spinor bundle for the } \mathrm{Spin}^{c_{-}}\text{-str.}$ $\Rightarrow S^{\pm} \text{ are NOT complex bundles.}$ Take the *I*-invariant part of the monopole map μ_{SW} on \tilde{X} . $\Rightarrow \operatorname{Pin}^{-}(2)$ -monopole map,

$$\mu \colon \mathcal{A} \times \Gamma(S^+) \to \Omega^+(i\lambda) \times \Gamma(S^-),$$

where $\lambda = \tilde{X} \times_{\{\pm 1\}} \mathbb{R}$, $\mathcal{A} = \{ \mathcal{O}(2) \text{-connections on } E \} \leftarrow \text{an affine sp. of } \Omega^1(i\lambda)$

Symmetry

$$\mathcal{G} = \{ f \in \operatorname{Map}(\tilde{X}, \operatorname{U}(1)) \mid f(-x) = f(x)^{-1} \}$$

= $\Gamma(\tilde{X} \times_{\{\pm 1\}} \operatorname{U}(1)),$

where $\{\pm 1\} \curvearrowright U(1)$ by $z \mapsto z^{-1}$.

Nobuhiro Nakamura $\operatorname{Pin}^-(2)$ -monopole equations and its applications

Introduction Pin ⁻ (2)-monopole theory Proof of Theorem 1 & 2 Recent results	${ m Spin}^{c-}$ -structures Moduli spaces

- ▶ A basic fact due to [Furuta '08]: \exists Spin^{*c*-}-structure on $(X, E) \Leftrightarrow w_2(X) = w_2(E) + w_1(E)^2$.
- ► If $E \cong \underline{\mathbb{R}} \oplus \lambda = \underline{\mathbb{R}} \oplus (\tilde{X} \times_{\{\pm 1\}} \mathbb{R})$ ⇒ P is reduced to $\text{Spin}(4) \times_{\{\pm 1\}} \langle \pm 1, \pm j \rangle$ -bundle ⇒ an analogy of spin structure. ⇒ $\exists \text{Larger symmetry}$

$$\mathcal{G}' = \Gamma(\tilde{X} \times_{\{\pm 1\}} \operatorname{Pin}^{-}(2)),$$

where $\{\pm 1\} \curvearrowright \mathrm{Pin}^-(2) = \mathrm{U}(1) \cup j \, \mathrm{U}(1)$ is given by

$$z \mapsto z^{-1}$$
 for $z \in U(1)$,
 $j \mapsto j$.

Moduli spaces

$$\mathcal{M} = \mu^{-1}(0)/\mathcal{G} \subset (\mathcal{A} \times \Gamma(S^+))/\mathcal{G}$$

Proposition

- ► *M* is compact.
- The virtual dimension of \mathcal{M} :

$$d = \frac{1}{4}(\tilde{c}_1(E)^2 - \operatorname{sign}(X)) - (b_0(X;l) - b_1(X;l) + b_+(X;l)),$$

where $\tilde{c}_1(E)$ is the *twisted 1st Chern class*.

- $\tilde{c}_1(E)$ is the Euler class of E considered in $H^2(X; l)$ where $l \subset \lambda = \det E$, sub- \mathbb{Z} -bundle.
- If l is nontrivial & X connected $\Rightarrow b_0(X; l) = 0.$

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and its applications
Introduction Pin ⁻ (2)-monopole theory Proof of Theorem 1 & 2 Recent results	Spin^{c-} -structures Moduli spaces

Reducibles

- ► For $(A, \phi) \in \mathcal{A} \times \Gamma(S^+)$, if $\phi \neq 0 \Rightarrow \mathcal{G}$ -action is free.
- The stabilizer of $(A, 0) = \{\pm 1\} \subset \mathcal{G} = \Gamma(\tilde{X} \times_{\{\pm 1\}} U(1)).$
- The elements of the form (A, 0) are called reducibles.
- ▶ In general, { reducible solutions }/ $\mathcal{G} \cong T^{b_1(X;l)} \subset \mathcal{M}.$

Cf. In the SW-case, the stabilizer of $(A, 0) = S^1 \subset Map(X, S^1)$.

Key difference

Ordinary SW case

• Reducible \rightarrow The stabilizer $= S^1$.

$$\mathcal{M}_{SW} \setminus \{ \mathsf{reducibles} \} \subset (\mathcal{A} \times (\Gamma(S^+) \setminus \{0\})) / \mathcal{G}_{SW} \simeq B \mathcal{G}_{SW}$$
$$\simeq T^{b_1(X)} \times \mathbb{C}\mathrm{P}^{\infty} .$$

 $\operatorname{Pin}^{-}(2)$ -monopole case

• Reducible \rightarrow The stabilizer = $\{\pm 1\}$.

$$\mathcal{M} \setminus \{ \mathsf{reducibles} \} \subset (\mathcal{A} \times (\Gamma(S^+) \setminus \{0\})) / \mathcal{G} \simeq B\mathcal{G}$$
$$\simeq T^{b_1(X;l)} \times \mathbb{R}P^{\infty}.$$

Nobuhiro Nakamura $Pin^{-}(2)$ -monopole equations and its applications

Introduction Pin ⁻ (2)-monopole theory Proof of Theorem 1 & 2 Recent results	Proof of Theorem 1 Proof of Theorem 2

Proof of Theorem 1

Outline of the proof

• We will prove every characteristic element w of $Q_{X,l}$ satisfies

$$|w^2| \ge \operatorname{rank} H^2(X;l),$$

by proving for every \boldsymbol{E} ,

 $d = \dim \mathcal{M} \le 0.$

- Then Elkies' theorem implies $Q_{X,l}$ should be standard.
- An element w in a unimodular lattice L is called *characteristic* if $w \cdot v \equiv v \cdot v \mod 2$ for $\forall v \in L$.

[Elkies '95]

 $L \subset \mathbb{R}^n$: unimodular lattice. If \forall characteristic element $w \in L$ satisfies $|w^2| \ge \operatorname{rank} L$, $\Rightarrow L \cong$ diagonal.

The structure of \mathcal{M} when $b_+(X;l) = 0$

- Suppose a Spin^{c_-}-structure (P, τ) on X is given.
- For simplicity, assume $b_1(X, l) = 0$. $\Rightarrow \exists^1 \text{ reducible class } \rho_0 \in \mathcal{M}$.
- Perturb the $\operatorname{Pin}^{-}(2)$ -monopole equations by adding $\eta \in \Omega^{+}(i\lambda)$ to the curvature equation. $\rightarrow F_{A}^{+} = q(\phi) + \eta$.
- For generic η , $\mathcal{M} \setminus \{\rho_0\}$ is a *d*-dimensional manifold.
- Fix a small neighborhood $N(\rho_0)$ of $\{\rho_0\}$. $\Rightarrow N(\rho_0) \cong \mathbb{R}^d / \{\pm 1\} =$ a cone of $\mathbb{R}P^{d-1}$

Then $\overline{\mathcal{M}} := \overline{\mathcal{M} \setminus N(\rho_0)}$ is a compact *d*-manifold & $\partial \overline{\mathcal{M}} = \mathbb{R}P^{d-1}$.

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and its applications
Introduction Pin ⁻ (2)-monopole theory Proof of Theorem 1 & 2 Recent results	Proof of Theorem 1 Proof of Theorem 2
ρ_0 $\mathbb{R}P^{d-1}$	Image: Main state

- Note $\overline{\mathcal{M}} \subset (\mathcal{A} \times (\Gamma(S^+) \setminus \{0\})) / \mathcal{G} =: \mathcal{B}^*.$
- Recall $\mathcal{B}^* \simeq_{h.e.} T^{b_1(X;l)} \times \mathbb{R}P^{\infty}$.

Lemma

If $b_+(X;l) = 0$ & $b_1(X;l) = 0 \Rightarrow d = \dim \mathcal{M} \le 0.$

Proof

- Suppose d > 0.
- Recall $\overline{\mathcal{M}}$ is a compact *d*-manifold s.t. $\partial \overline{\mathcal{M}} = \mathbb{R}P^{d-1}$.
- ► $\exists C \in H^{d-1}(\mathcal{B}^*; \mathbb{Z}/2) \cong H^{d-1}(\mathbb{R}P^\infty; \mathbb{Z}/2)$ s.t. $\langle C, [\partial \overline{\mathcal{M}}] \rangle \neq 0. \Rightarrow \text{Contradiction}.$

Nobuhiro Nakamura $Pin^{-}(2)$ -monopole equations and its applications

Introduction Pin ⁻ (2)-monopole theory Proof of Theorem 1 & 2 Recent results	Proof of Theorem 1 Proof of Theorem 2
---	---

- Note $sign(X) = b_+(X; l) b_-(X; l)$ for any \mathbb{Z} -bundle l.
- By Lemma, if l is nontrivial & $b_+(X;l) = 0$ & $b_1(X;l) = 0$,

$$d = \frac{1}{4} (\tilde{c}_1(E)^2 - \operatorname{sign}(X)) - (b_0(X;l) - b_1(X;l) + b_+(X;l))$$

= $\frac{1}{4} (\tilde{c}_1(E)^2 + b_2(X;l)) \le 0.$

Note $\tilde{c}_1(E)^2 \le 0$ if $b_+(X; l) = 0$.

• Therefore, for any E which admits a $\text{Spin}^{c_{-}}$ -structure,

$$b_2(X;l) \le |\tilde{c}_1(E)^2|.$$

By varying E, we can prove every characteristic element w satisfies

$$b_2(X;l) \le |w^2|.$$

Proof of Theorem 1 Proof of Theorem 2

The outline of the proof of Theorem 2

- If $E = \underline{\mathbb{R}} \oplus \lambda \Rightarrow \operatorname{Spin}^{c_{-}}$ -structure on (X, E) has the larger symmetry $\mathcal{G}' = \Gamma(\tilde{X} \times_{\{\pm 1\}} \operatorname{Pin}^{-}(2)).$
- For simplicity, assume $b_1(X; l) = 0$.
- ► Then, by taking finite dimensional approximation of the monopole map, we obtain a proper Z₄-equivariant map

$$f: \tilde{\mathbb{R}}^m \oplus \mathbb{C}^{n+k}_1 \to \tilde{\mathbb{R}}^{m+b} \oplus \mathbb{C}^n_1$$

where

- $\mathbb{\tilde{R}}$ is \mathbb{R} on which \mathbb{Z}_4 acts via $\mathbb{Z}_4 \to \mathbb{Z}_2 = \{\pm 1\} \curvearrowright \mathbb{R}$,
- \mathbb{C}_1 is \mathbb{C} on which \mathbb{Z}_4 acts by multiplication of i,
- $k = -\operatorname{sign}(X)/8$, $b = b_+(X; \lambda)$, m, n are some integers.

Here, \mathbb{Z}_4 is generated by the constant section

 $j \in \mathcal{G}' = \Gamma(\tilde{X} \times_{\{\pm 1\}} \operatorname{Pin}^{-}(2)).$

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and its applications
Introduction Pin ⁻ (2)-monopole theory Proof of Theorem 1 & 2 Recent results	Proof of Theorem 1 Proof of Theorem 2

By using the techniques of equivariant homotopy theory, e.g., tom Dieck's character formula, we can see that any proper Z₄-map of the form,

$$f\colon \mathbb{\tilde{R}}^m \oplus \mathbb{C}^{n+k}_1 \to \mathbb{\tilde{R}}^{m+b} \oplus \mathbb{C}^n_1,$$

should satisfy $b \ge k$.

That is,

$$b_+(X;\lambda) \ge -\frac{1}{8}\operatorname{sign}(X).$$

Finite dimensional approximation

• Take a flat connection A_0 on $\underline{\mathbb{R}} \oplus \lambda$.

 $\operatorname{Pin}^{-}(2)$ -monopole map

$$\mu \colon \Omega^1(i\lambda) \oplus \Gamma(S^+) \to (\Omega^0 \oplus \Omega^+)(i\lambda) \oplus \Gamma(S^-) =: \mathcal{W},$$
$$(a,\phi) \mapsto (d^*a, F_{A_0} + d^+a + q(\phi), D_{A_0 + a}\phi).$$

- Let $l(a, \phi) := (d^*a, d^+a, D_{A_0}\phi)$ be the linear part of μ . $\rightarrow l$ is Fredholm.
- $c = \mu l$: quadratic, compact.
- ▶ Choose a finite dim. subspace $U \subset \mathcal{W}$ s.t. dim $U \gg 1$, $U \supset (\operatorname{im} l)^{\perp}$
- Let $V := l^{-1}(U)$ & $p \colon \mathcal{W} \to U$ be the L^2 -projection.
- ▶ Define $f: V \to U$ by f = l + pc. $\to f$: proper, \mathbb{Z}_4 -equiv.

 Nobuhiro Nakamura
 Pin⁻(2)-monopole equations and its applications

 Introduction
 Pin⁻(2)-monopole theory

 Proof of Theorem 1 & 2
 The genus of embedded surfaces

 Final remarks
 Final remarks

The genus of embedded surfaces in 4-manifolds

Theorem

- ► X: closed ori. 4-manifold
- c: Spin^c-structure on X.
 L: the determinant line bundle of c.
- $\Sigma \subset X$: connected embedded surface s.t. $[\Sigma] \in H_2(X; \mathbb{Z}), \ [\Sigma] \cdot [\Sigma] \ge 0.$

If $\mathrm{SW}(X,c) \neq 0$ or $\mathrm{BF}(X,c) \neq 0$, then

 $-\chi(\Sigma) = 2g - 2 \ge c_1(L)[\Sigma] + [\Sigma] \cdot [\Sigma].$

 This is due to: [Kronheimer-Mrowka], [Fintushel-Stern], [Morgan-Szabo-Taubes], [Ozsvath-Szabo], [Furuta-Kametani-Matsue-Minami]...

The genus of nonorientable embedded surfaces

• (X^4, l) as before.

Let us consider a connected surface Σ s.t.

- $i: \Sigma \hookrightarrow X$: embedding
- \blacktriangleright The orientation coefficient of $\Sigma=i^*l$
- $\begin{array}{l} \to \ \exists \mathsf{Fundamental\ class\ } [\Sigma] \in H_2(\Sigma; i^*l). \\ \mathsf{Let}\ \alpha := i_*[\Sigma] \in H_2(X; l) \text{, where } i_* \colon H_2(\Sigma; i^*l) \to H_2(X; l). \end{array}$

Proposition

For $\forall \alpha \in H_2(X; l)$, there exists Σ as above.

Remark

• Σ may be orientable or nonorientable.

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and its applications
Introduction Pin ⁻ (2)-monopole theory Proof of Theorem 1 & 2 Recent results	The genus of embedded surfaces Final remarks

Theorem 3.(N.)

- (X, l, Σ) as above.
- Let $\alpha := i_*[\Sigma] \in H^2(X; l)$. Suppose $\alpha \cdot \alpha \ge 0$.
- ▶ c: Spin^c--structure s.t. det $E = l \otimes \mathbb{R}$.
- \tilde{c} : the Spin^{*c*}-structure on \tilde{X} induced from *c*.

If $SW^{Pin}(X, c) \neq 0$ or $BF^{Pin}(X, c) \neq 0$ or $SW(\tilde{X}, \tilde{c}) \neq 0$ or $BF(\tilde{X}, \tilde{c}) \neq 0$, then

$$-\chi(\Sigma) \ge \tilde{c}_1(E) \cdot \alpha + \alpha \cdot \alpha$$

Remark

- Σ : orientable $\Rightarrow -\chi(\Sigma) = 2g 2$.
- Σ : nonorientable $\Rightarrow -\chi(\Sigma) = g 1$.

Example

• X: Enriques surface

$$\Rightarrow \pi_1 X = \mathbb{Z}/2$$

$$\Rightarrow \tilde{X} = K3, \ l := \tilde{X} \times_{\{\pm 1\}} \mathbb{Z}, \ \lambda := \tilde{X} \times_{\{\pm 1\}} \mathbb{R}$$

$$\Rightarrow \exists c: \ \text{Spin}^{c_-} \text{-structure s.t.} \ E \cong \underline{\mathbb{R}} \oplus \lambda. \ (\tilde{c}_1(E) = 0)$$

$$\Rightarrow \text{SW}^{\text{Pin}}(X, c) \neq 0 \ (\text{SW}(\tilde{X}, \tilde{c}) \neq 0)$$
For $\Sigma \stackrel{i}{\hookrightarrow} X \text{ s.t.} \ \alpha = i_*[\Sigma] \in H_2(X; l) \ \& \ \alpha \cdot \alpha \ge 0$

$$-\chi(\Sigma) \ge \alpha \cdot \alpha.$$

Final remarks

- ▶ $Pin^{-}(2)$ -monopole invariants
 - Calculation, gluing formula, stable cohomotopy refinements
- When \tilde{X} : symplectic & $I^*\omega = -\omega$,
 - $Pin^{-}(2)$ -monopole inv. = real Gromov-Witten inv.
 - Cf. [Tian-Wang]
- Pin⁻(2)-monopole Floer theory? Pin⁻(2) Heegaard Floer theory?
- "Witten conjecture" for $Pin^{-}(2)$ -monopole invariants?
 - ► [Feehan-Leness] SW = Donaldson
 - $Pin^{-}(2)$ -monopole inv. = ???