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Two worlds of manifolds

TOP,, :={n-dimensional topological manifolds}/homeo.
DIFF,, :={n-dimensional smooth manifolds)} /diffeo.

We will assume every manifold is connected, closed and oriented.

Forgetful map
¢n: DIFF, — TOP,..
Basic question: Is ¢, injective, surjective?

> ¢, is NOT surjective < 3FNonsmoothable n-manifolds

> ¢, is NOT injective < JExotic smooth structures
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» n <3 = TOP, = DIFF,,.

» n >4 = In general, TOP,, # DIFF,,.

» n > 5 = Algebraic topology (Surgery theory).
» n =4 = Difficult

» Freedman's theory — TOP,
» Gauge theory — DIFFy

We concentrate on n = 4 below.
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» Let X be a closed oriented 4-manifold.

Intersection form

Qx: H?(X;Z)/torsion x H*(X;Z)/torsion — Z,
(a,b) — (aU b, [X]).

> (Qx is a symmetric bilinear unimodular form.

[J.H.C.Whitehead '49]

If 74X =1, the homotopy type of X is determined by the
isomorphism class of Qx.
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Some definitions
» Qx: even & Va, Qx(a,a) =0 mod 2.

» Qx: odd & Ja, Qx(a,a) =1 mod 2.
> Qx: positive (negative) definite < Va # 0, Qx(a,a) > 0 (< 0).

» b (X), b_(X): Decompose H2(X;Q) = H(X) ® H_(X),
s.t. Qx ®Q is posi.(nega.) definite on Hy(X) (H_(X)). Let
bi(X) =rank Hy(X)

» sign(X) = by (X) — b_(X).

Fact
> (: even form = sign =0 mod 8.
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Examples

» X =S Qx =0.

v

10
In general, X =%, x X4, Qx =H®---@® H, where ¥ is
a closed Riemann surface of genus g.

X:S2xs2,QX:H:<O 1).

v

X =CP? Qx = (1).
X =CP?, Qx = (—1).

v

X:m(CPQ#n@2,
Ox=0@--ao)e(-1)®- - (-1).

m n

X = K3, Qx = 2(—Es) ® 3H.

v

v
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I
In TOP4

mX =1
[Freedman '82]
The homeo type of X is determined by
» the iso. class of Qx if Qx is even,
» the iso. class of Qx & ks(X) if Qx is odd.

7'('1X7£1

If 71 X is “Good" = Freedman theory + Surgery theory.
— Difficult.
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I
In DIFF,

[Rohlin,'52] ‘ If X is spin = sign(X) =0 mod 16. ‘

[Donaldson,’82] ‘ If @x is definite = Qx ~ The diagonal form. ‘

[Furuta,'95] If X is spin & Qx is indefinite, then

10
ba(X) > §|sign(X)| +2.

» In these results, 71(X) is arbitrary.

> These results + Freedman'’s theory
= dMany nonsmooothable 4-manifolds.
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Refinements, variants when 7 # 1

[Furuta-Kametani '05]
The strong 10/8-inequality in the case when b;(X) > 0.

[Froyshov '10]
A local coefficient analogue of Donaldson’s theorem.
local coefficients <+ double coverings +» H(X;Z/2)
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Froyshov's results

4-manifolds and intersection forms with local coefficients, arXiv:1004.0077

v

Suppose a double covering X — X is given.
» =X X{+1} Z, a Z-bundle over X.

— H*(X;1): l-coefficient cohomology.
Note [ ® [ = Z. The cup product

v

U: H3(X;1) x H*(X;1) —» HY(X;Z) = Z,
induces the intersection form with local coefficient

Qx,: H*(X;1)/torsion x H*(X;1)/torsion — Z.

v

Qx, is also a symmetric bilinear unimodular form.
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Example

» V: closed 4-manifold with 7V = 1.
» X = V#(S? x T?).

» [: a nontrivial Z-bundle over X.

Qx =QvaH, Qx;=Qv.

v

E: Enriques surface = m E =7/2

» [: a nontrivial Z-bundle over E.

Qp = (~Bs) & H, QE,F(—ES)@H@(? 1)
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A special case of Froyshov's theorem

» X: a closed connected oriented smooth 4-manifold s.t.
b (X) + dimg o (torHy (X3 Z) ® Z/2) < 2. (1)

» [ — X: a nontrivial Z-bundle.

If Qx, is definite = ()x,; ~ diagonal.

» The original form of Froyshov's theorem is:

If X with 0X =Y : ZHS? satisfies (1)
& ()x, is nonstandard definite
= 0o: HFY(Y;Z/2) — 7Z/2 is non-zero.
» Y =5%= HF*Y;Z/2) = 0 =The above result.
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» The proof uses SO(3)-Yang-Mills theory on a SO(3)-bundle V.

» Twisted reducibles (stabilizer = Z/2) play an important role.
V is reduced to A @ E, where E is an O(2)-bundle,

A = det E: a nontrivial R-bundle.

Cf [Fintushel-Stern'84]'s proof of Donaldson’s theorem also used
SO(3)-Yang-Mills.
— Abelian reducibles (stabilizer = U(1))
V is reduced to R & L, where L is a U(1)-bundle.

- Donaldson’s theorem is proved by Seiberg-Witten theory, too.

Question
Can we prove Froyshov's result by Seiberg-Witten theory?
— Our result would be an answer.
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Theorem 1.(N.)

» X: a closed connected ori. smooth 4-manifold.
» | — X: a nontrivial Z-bdl. s.t. wi(A\)? =0, where A = ® R.

If Qx, is definite = (Q)x; ~ diagonal.

Cf. Froyshov's theorem

» X: — st b7 (X) 4 dimyg o (torHy (X;2) ® 2/2) < 2.
» [ — X: a nontrivial Z-bundle.

If Qx, is definite = Q) x; ~ diagonal.
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Theorem 1.(N.)

» X: a closed connected ori. smooth 4-manifold.
» | — X: a nontrivial Z-bdl. s.t. wi(A\)? =0, where A = ® R.

If Qx, is definite = Q)x; ~ diagonal.

For the proof, a variant of Seiberg-Witten (U(1)-monopole)
equations is introduced

v

— | Pin™ (2)-monopole equations

v

Pin™ (2)-monopole eqns are defined on a Spin®-structure.

» Spin®-structure is a Pin™ (2)-variant of Spin“-str. defined by
M.Furuta, whose complex structure is “twisted along [".
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» The moduli space of Pin™ (2)-monopoles is compact.
— Bauer-Furuta theory can be developed.

Furuta's theorem
Let X be a closed ori. smooth spin 4-manifold with indefinite Q) x.

10
ba(X) > §|sign(X)\ +2.

Theorem 2(N.)

Let X be a closed connected ori. smooth 4-manifold. For any
nontrivial Z-bundle I — X s.t. wi(\)? = wy(X), where A = [ @ R,

10
ba(X31) = | sign(X),

where by(X;1) = rank Ha(X; N).
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A new class of nonsmoothable 4-manifolds

Recall fundamental theorems.

1. [Rohlin] X*: closed spin = sign(X) = 0 mod 16.

2. [Donaldson] Definite = diagonal.

3. [Furuta] The 10/8-inequality

3" [Furuta-Kametani| The strong 10/8-inequality in the case

when b1 > 0.

Corollary 1(N.)

3 Nonsmoothable closed indefinite spin 4-manifolds satisfying
» sign(X) =0 mod 16,
» the strong 10/8-inequality.
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Proof

» Let M be T* or T? x S%. = Qps = 3H, Qpo2yge = H.

» If I’ — M is any nontrivial Z-bundle,
= bQ(M; l/) =0& wl(l’ ®R)2 =0.

» Let V be a topological 4-manifold s.t. mV =1, Qv is even
and definite, sign(V') = 0 mod 16. (= V is spin.)

> Choose a large k s.t. X = V#kM satisfies the strong
10/8-inequality.

> Let | :=Z#kl - X. = Qx,=Qv, wl(l®R)2 =0.

» Suppose X is smooth. By Theorem 1,
Qx,; = Qv ~ diagonal. Contradiction.
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I
Spin“(4)

Pin~(2) = (U(1),5) = U(1) Uj U(1) C Sp(1) C H.

Two-to-one homomorphism Pin™(2) — O(2)

z€U(1) c Pin™(2) — 22 € U(1) 2 SO(2) C 0O(2),

R 1 0
770 1)
Definition Spin®-(4) := Spin(4) x4} Pin™(2).

» Spin®-(4)/Pin~(2) = Spin(4)/{£1} = SO(4)
» Spin®-(4)/Spin(4) = O(2)
» The id. compo. of Spin“(4) = Spin(4) x 413 U(1)
= Spin©(4)
Spin“-(4)/ Spin©(4) = {£1}.
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L
Spin“-structures
» X: an oriented Riemannian 4-manifold.
— Fr(X): The SO(4)-frame bundle.
» X %! X nontrivial double covering, | := X X{+1} Z
Spin“~-structure

A Spin®-structure on X — X is given by
» P: a Spin® (4)-bundle over X,

» P/Spin°(4) > X
» P/Pin~(2) > Fr(X).
Then we have

» E = P/Spin(4) %) X characteristic O(2)-bundle.
— I-coefficient Euler class ¢ (E) € H?(X;1).
H2(X:1) <25 {O(2)-bundle E over X s.t. E/SO(2) = X} /iso.
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PA~JJ?=

J2=—1
w\

Spin®— (4) P/Spin‘(4) = XA 1,12 = id ¢

X

Spin€ (4
> P pin ( ) X defines a Spin®-structure on X

» J =[1,7] € Spin(4) x {413 Pin™(2) = Spin‘~(4).
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A Spin“--str. on X can be given by the data

» A Spin®structure on X

(PN % pu) 3 Fr(X)
> A fiber preserving diffeo. J: P, — P, covering 1: X — X s.t.
» J2=-1
> J(pg) = J(p)g, where
Spin®(4) = Spin(4) x (413 U(1) 3 g = [g,2] = § = [g, 2]
J is NOT a Spin®(4)-bundle auto.
» J induces t,: Fr(X) — Fr(X)
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Define the action I on the spinor bundles:
gi =P X Spin®(4) Hy A [‘]7.7] =1

= % = 1~& I is antilinear.
= ST = S* /I are the spinor bundles for the Spin®=-str.
S* are not complex bundles.

I induces an antilinear involution on L = det S*.
= The characteristic O(2)-bundle E = L/I.

Pin~ (2)-monopole on X = I-invariant Seiberg-Witten on X

In fact, Mpiy = (Msw)!
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Take the I-invariant part of the monopole map pgw on X.
= Pin™ (2)-monopole map,

p: AxT(ST) = iQT (I @R) x T'(S7)

where
A = {O(2)-connections on E} < an affine sp. of iQ!(l @ R)

Gauge symmetry

G ={f € Map(X,U(1)) | f(rx) = f(x)"'}
=I'(X x 113 U(1)),

where {£1} ~ U(1) by z — 271,

Nobuhiro Nakamura Pin~ (2)-monopole equations and applications



Moduli spaces

M = pu710)/G C (AxT(S))/G
Proposition
» M is compact.
» The virtual dimension of M:
1

d = (@ (E)? = sign(X)) — (th — b} + L),

where b, = rank Ho(X;1).
- If L is nontrivial & X connected = b}, = 0.
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L
Reducibles

v

For (4,®) € Ax T'(ST), if ® # 0 = G-action is free.
The stabilizer of (A, ® =0) = {£1}

The elements of the form (A, ® = 0) are called reducibles.
In general, { reducible solutions }/G = T% C M.

v

v

v

Cf. In the SW-case, the stabilizer of (4,0) = S € Map(X, S).
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N
Key difference

Ordinary SW case

» Reducible — The stabilizer = S?.

Mgsw \ {reducibles} C(A x (I'(ST)\ {0}))/Gsw ~ BGsw
~T" x CP™.

Pin™(2)-monopole case
» Reducible — The stabilizer = {£1}.

M\ {reducibles} C(A x (['(ST)\ {0}))/G ~ BG
~ T x RP* .
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Proof of Theorem 1

» For simplicity, assume b} =

Lemma 1
V characteristic elements w of Qx,

|w?| > bh.

An element w in a unimodular lattice L is called characteristic if
w-v=v-v mod 2 for Vv € L.

[Elkies '95]
L C R™: unimodular lattice. If VYcharacteristic element w € L
satisfies |w?| > rank L, = L = diagonal.

Lemma 1 & [Elkies '95] = Qx; ~ diagonal.
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Lemma 2
If wi(l®R)2 =0
= V characteristic element w, 3 Spin“-str. s.t. & (F) = w.

Lemma 3
If bl+ = bﬁ =0 = dim M <0 for VSpin®-str.

Lemma 2 & 3 = Lemma 1

1 1
0> dimM = Z(al(E)Q—sig_gm(X))—(bg—bl1+bl+) = Z(—|w2|+bl2)
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The structure of M when b, (X;[) =0

>

>

>

Suppose a Spin®--structure (P, 7) on X is given.
b1(X,1) = 0 = 3! reducible class py € M.

Perturb the Pin™ (2)-monopole equations by adding
n € Q1 (i)) to the curvature equation. — i = q(¢) + .

For generic n, M \ {po} is a d-dimensional manifold.
Fix a small neighborhood N (pg) of {po}-.
= N(py) 2R4/{£1} = a cone of RP¢"!

Then M := M\ N(pg) is a compact d-manifold &
OM =RP .
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» Note M C (A x (D(S1)\ {0})) /G =: B*.
» Recall B* ~ Tti(Xi)  RPo©.

h.e.
Lemma 3
Ifol, =0& b =0 =d=dimM <0.
Proof

» Suppose d > 0.

» Recall M is a compact d-manifold s.t. OM = RP% 1.

» 3C € H"Y(B*;Z/2) = H* 1 (RP>®;Z/2) s.t.
(C,[0M]) # 0. = Contradiction.
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The outline of the proof of Theorem 2
» If E=R& A = Spin“ -structure on (X, E) has the larger
symmetry G' = I'(X X113 Pin™(2)).
» For simplicity, assume b;(X;[) = 0.

» Then, by taking finite dimensional approximation of the
monopole map, we obtain a proper Z4-equivariant map

fR™@Citr - R g CF,

where
» R is R on which Z, acts via Zy — Zy = {£1} A R,
» C; is C on which Z,4 acts by multiplication of i,
» k= —sign(X)/8, b=">0by(X; ), m,n are some integers.

Here, Z,4 is generated by the constant section

j€G =T(X x4, Pin™(2)).
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» By using the techniques of equivariant homotopy theory, e.g.,
tom Dieck’s character formula, we can see that any proper
Z4-map of the form,

fiR™ e CY - R o CF,

should satisfy b > k.
» That is, .
bi(X5A) > ~3 sign(X).
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Finite dimensional approximation
» Take a flat connection Ap on R @ A.
Pin™(2)-monopole map

p: QLEN) @T(ST) = (L a QM) (IN) e T(S7) = W,
(av ¢) — (d*av FAO + d*a + Q(¢)’ DA0+G¢)'

v

Let I(a, @) := (d*a,da, Da,¢) be the linear part of p.

— [ is Fredholm.

» ¢ = p — I: quadratic, compact.

Choose a finite dim. subspace U C W s.t. dimU > 1,
U D (iml)*

Let V:=1"YU) & p: W — U be the L?-projection.

Define f: V — U by — f: proper, Z4-equiv.

v

v

v
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Pin™ (2)-monopole invariants

If bl+ > 1 = by perturbing the eqns
» M contains no reducible.
» M is a finite dimensional manifold.
M C (Ao x (N(ST)\{01)/G = T" x RP>
.€e

H*(RP*™ x TV Zo) =Za2n] ® /\Zgll, where 7: generator of H!(RP>).

Pin™ (2)-monopole invariants
. i
Define SWPI: Zy[n] @ \Z5 — Zs by

SWFR (k@ t) = (i @ t,[M]).

If bl+ > 2 = SWPn is a diffeomorphism invariant of X.
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Exotic structures

» E(1) = CP2#9CD".
» E(n) =EQ)#s---#¢E(1). Note E(2) = K3.

n

Theorem(due to many people)

Joo many exotic smooth structures on E(n) for n > 1.

» Construction:

» Log transform.

» Knot surgery ([Fintushel-Stern,’98])
» Method to detect exotic structures

» Donaldson invariants «— ASD equation
» Seiberg-Witten invariants «— SW equations
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Exotic small manifolds
[Kotchick,'89] Let B be the Barlow surface.

B = CP2#8CP° but B 2 CP2#SCP.

homeo. diffeo.

» Method: Donaldson inv.

[J.Park,'03] 3 exotic structures on CP? #7@2.
» Construction: Rational blow down [Fintushel-Stern,'97]
» Method: SW inv.

At present, it is known
. ——=2
3 exotic structures on CP? #2CP".
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Stabilization & Vanishing results

[Wall,'64]

mX1=mXo=1& Qx, £ Qx, = X1 = X, Possibly X1 % X

homeo. diffeo.

= Jkst. X #k(S? x §?) = Xo#k(S? x §%).

Theorem ([Donaldson, Witten])

» X4, Xo: b+(X1) >0, b_|_(X2) > 0.

Then all of Donaldson invariants & Seiberg-Witten invariants of
X1#X5 are 0.

X1, Xo: exotic pair, Y with b (Y) >0
=- Cannot prove the pair X1#Y and Xo#Y is an exotic pair by
using Donaldson & SW inv.
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On the other hand,

[Fintushel-Stern, Kotschick-Morgan-Taubes, Froyshov]

> Y1, Y b1 (Y;) =by(Y;) =0eg., Y; =CP, QHS!
orY; =81 x 83,
» X: SW(X) #£0

= SW(X#Yi# - #Y;) #0.

By using this, we can prove
Jdexotic str. on E(n)#Y1# - #Y.
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By using SWY™ we can obtain

Theorem (N.)
ForVk, g >1 (1 <i<k),

Joo many exotic structures on E(n)#(S? x X4, )# - #(S% x B,,).

» Pin™ (2)-monopole = SW twisted along a local coefficient.

» For some local coefficient ,
bl (S% x B,) := dim H (S? x Zy;1) = 0.

= SWI(E(n)#(5% x B¢, )# - #(5% x 5y,)) #0.
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I
Theorem (N.)

» X: 4-manifold, for a Spin®-str. ¢;, SW-inv is odd.

» Y 4-manifold with nontrivial double covering }7, s.t.

»  positive scalar curvature metric
» 3 Spin~-str. co .
st by =0 & v-dim M = by, for [ =Y x .y Z.
1
= M = {reducibles only} /G = T" & transversal

For ci#co over X#Y,
SWP(n © ) #£0,
where 1°P s the generator of H (T%).

» The virtual dimension of M(X#Y, c1#c2) is positive.

» The ordinary SW & stable cohomotopy SW of X#Y are 0.
(.Y admits a PSC metric.)
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More exotic connected sums

By using stable cohomotopy SW invariants ([Bauer-Furutal),
> K3#---#K3: 1 <k <4 = dexotic
—— —
k
» X = E(n1)#E(n2)#E(n3)#E(na)
n;: even, and by (X) (E) 4 = Jexotic
8

» [Sasahira] My, My = K3 or ¥y x Xy (g, ¢': odd)
= dexotic str. on K3#M; and K3# M # M.
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The genus of embedded surfaces in 4-manifolds

Theorem

» X: closed ori. 4-manifold with b > 2.

» ¢ Spin®structure on X.
L: the determinant line bundle of c.

» > C X: connected embedded surface
st. [X] € Hy(X;2Z), [¥]-[X] > 0.

If SW(X,¢) # 0 or stable cohomotopy SW(X, ¢) # 0, then
—X(%) =29 =2 = [a(D)[E]] + [£] - [X].
» This is due to: [Kronheimer-Mrowka], [Fintushel-Stern],

[Morgan-Szabo-Taubes], [Ozsvath-Szabo],
[Furuta-Kametani-Matsue-Minami]...
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Embedded surfaces representing a class in Ho(X;1)

» X — X: nontrivial double covering, I = X X{+1} Z-
Let us consider a connected surface ¥ s.t.

> 3: 3 — X: embedding

> (The orientation coefficient of ¥) = i*!

— JFundamental class [X] € Ho(3;i*1).
Let o := i,[X] € Ho(X;1), where iy: Ha(3;i*l) — Ha(X;1).

Proposition
For Vo € Ho(X;1), there exists ¥ as above.

Remark

» > may be orientable or nonorientable.
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Theorem (N.)

» (X,1,%) as above. Suppose b, > 2.
> Let [X] € Hao(X;1).
Suppose [X] - [X] > 0, & [X] is not a torsion.
» ¢ Spin“ -structure — The associated O(2)-bundle E

» ¢: the Spin‘-structure on X induced from c.

If one of the following is nonzero
» SWF or stable cohomotopy SWP of (X ¢),
» SW or stable cohomotopy SW of (X, ¢),

then
—x(2) = [X] - [Z] + [a(E) - [Z]].
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Example

> X = K3#(S* x Z1)# - #(8% x Z), (9 > 1).
» dls.t. Ho(X;1) = Ho(K3;Z) @ Torsion.
» Jest. & (E) =0 & SWY (X, ¢) £ 0.
For ¥ — X s.t. [¥] € Ho(X;1) & [X] - [X] > 0 & [X] is not a

torsion,
—x(2) =[] - [Z].
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Final remarks for future researches

» Pin~(2)-monopole invariants
» Calculation, gluing formula, stable cohomotopy refinements

v

Pin™(2)-monopole on branched coverings

» Exotic involutions
» Smooth inequivalent but topologically equivalent embedded
surfaces Cf. [Fintushel-Stern-Snukujian], [H.J.Kim-Ruberman]

» When X: symplectic & I*w = —w,
Pin™(2)-monopole inv. — real Gromov-Witten inv.

Cf. [Tian-Wang]

Pin™ (2)-monopole Floer theory?

Pin™(2) Heegaard Floer theory?

“Witten conjecture” for Pin™ (2)-monopole invariants?
» [Feehan-Leness] SW = Donaldson

Pin™(2)-monopole inv. = 777

v

v
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