$Pin^{-}(2)$ -monopole equations and applications

Nobuhiro Nakamura

Gakushuin university

Dec 20, 2012

Two worlds of manifolds

$$\begin{split} & TOP_n := & \{\textit{n}\text{-dimensional topological manifolds}\} / \text{homeo.} \\ & DIFF_n := & \{\textit{n}\text{-dimensional smooth manifolds}\} / \text{diffeo.} \end{split}$$

We will assume every manifold is connected, closed and oriented.

Forgetful map

$$\varphi_n \colon \mathrm{DIFF}_n \to \mathrm{TOP}_n$$
.

Basic question: Is φ_n injective, surjective?

- φ_n is NOT surjective $\Leftrightarrow \exists Nonsmoothable n$ -manifolds
- φ_n is NOT injective $\Leftrightarrow \exists \mathsf{Exotic}$ smooth structures

- ▶ $n \le 3 \Rightarrow \text{TOP}_n = \text{DIFF}_n$.
- ▶ $n \ge 4 \Rightarrow \text{In general, } TOP_n \ne DIFF_n.$
 - ▶ $n \ge 5 \Rightarrow$ Algebraic topology (Surgery theory).
 - $n=4 \Rightarrow \text{Difficult}$
 - ▶ Freedman's theory $\longrightarrow TOP_4$
 - ▶ Gauge theory $\longrightarrow DIFF_4$

We concentrate on n=4 below.

▶ Let X be a closed oriented 4-manifold.

Intersection form

$$Q_X \colon H^2(X; \mathbb{Z}) / \mathsf{torsion} \times H^2(X; \mathbb{Z}) / \mathsf{torsion} \to \mathbb{Z},$$

 $(a,b) \mapsto \langle a \cup b, [X] \rangle.$

 $ightharpoonup Q_X$ is a symmetric bilinear unimodular form.

[J.H.C.Whitehead '49]

If $\pi_1 X = 1$, the homotopy type of X is determined by the isomorphism class of Q_X .

Some definitions

- Q_X : even $\Leftrightarrow \forall a, Q_X(a,a) \equiv 0 \mod 2$.
- $ightharpoonup Q_X$: odd $\Leftrightarrow \exists a, Q_X(a,a) \equiv 1 \mod 2$.
- ▶ Q_X : positive (negative) definite $\Leftrightarrow \forall a \neq 0, Q_X(a,a) > 0 \ (< 0).$
- ▶ $b_+(X)$, $b_-(X)$: Decompose $H_2(X;\mathbb{Q}) = H_+(X) \oplus H_-(X)$, s.t. $Q_X \otimes \mathbb{Q}$ is posi.(nega.) definite on $H_+(X)$ ($H_-(X)$). Let $b_\pm(X) = \operatorname{rank} H_\pm(X)$
- \bullet sign $(X) = b_{+}(X) b_{-}(X)$.

Fact

▶ Q: even form $\Rightarrow sign \equiv 0 \mod 8$.

Examples

- $X = S^4$, $Q_X = 0$.
- ▶ $X = S^2 \times S^2$, $Q_X = H = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. In general, $X = \Sigma_{g_1} \times \Sigma_{g_2}$, $Q_X = H \oplus \cdots \oplus H$, where Σ_g is a closed Riemann surface of genus g.
- $X = \mathbb{C}P^2$, $Q_X = (1)$.
- $X = \overline{\mathbb{C}P^2}, Q_X = (-1).$
- $X = m \mathbb{C}P^2 \# n \overline{\mathbb{C}P}^2,$ $Q_X = \underbrace{(1) \oplus \cdots \oplus (1)}_{m} \oplus \underbrace{(-1) \oplus \cdots \oplus (-1)}_{n}.$
- $X = K3, Q_X = 2(-E_8) \oplus 3H.$

In TOP_4

$$\pi_1 X = 1$$

[Freedman '82]

The homeo type of X is determined by

- ▶ the iso. class of Q_X if Q_X is even,
- ▶ the iso. class of Q_X & ks(X) if Q_X is odd.

$\pi_1 X \neq 1$

If $\pi_1 X$ is "Good" \Rightarrow Freedman theory + Surgery theory. \rightarrow Difficult.

In DIFF₄

[Rohlin,'52]

If
$$X$$
 is spin $\Rightarrow \operatorname{sign}(X) \equiv 0 \mod 16$.

[Donaldson, '82] If Q_X is definite $\Rightarrow Q_X \sim$ The diagonal form.

[Furuta, '95] If X is spin & Q_X is indefinite, then

$$b_2(X) \ge \frac{10}{8}|\operatorname{sign}(X)| + 2.$$

- ▶ In these results, $\pi_1(X)$ is arbitrary.
- ► These results + Freedman's theory
 - $\Rightarrow \exists$ Many nonsmooothable 4-manifolds.

Refinements, variants when $\pi_1 \neq 1$

[Furuta-Kametani '05]

The strong 10/8-inequality in the case when $b_1(X) > 0$.

[Froyshov '10]

A local coefficient analogue of Donaldson's theorem.

local coefficients \leftrightarrow double coverings $\leftrightarrow H^1(X;\mathbb{Z}/2)$

Froyshov's results

4-manifolds and intersection forms with local coefficients, arXiv:1004.0077

- lacksquare Suppose a double covering $ilde{X} o X$ is given.
- $\begin{array}{l} \blacktriangleright \ l := \tilde{X} \times_{\{\pm 1\}} \mathbb{Z} \text{, a } \mathbb{Z} \text{-bundle over } X. \\ \longrightarrow H^*(X;l) \colon l\text{-coefficient cohomology}. \end{array}$
- ▶ Note $l \otimes l = \mathbb{Z}$. The cup product

$$\cup: H^2(X;l) \times H^2(X;l) \to H^4(X;\mathbb{Z}) \cong \mathbb{Z},$$

induces the intersection form with local coefficient

$$Q_{X,l} \colon H^2(X;l)/\mathsf{torsion} \times H^2(X;l)/\mathsf{torsion} \to \mathbb{Z}.$$

 $ightharpoonup Q_{X,l}$ is also a symmetric bilinear unimodular form.

Example

- ▶ V: closed 4-manifold with $\pi_1 V = 1$.
- $X = V \# (S^2 \times T^2).$
- ightharpoonup l: a nontrivial \mathbb{Z} -bundle over X.

$$Q_X = Q_V \oplus H, \qquad Q_{X,l} = Q_V.$$

- E: Enriques surface $\Rightarrow \pi_1 E = \mathbb{Z}/2$
- ▶ l: a nontrivial Z-bundle over E.

$$Q_E = (-E_8) \oplus H, \qquad Q_{E,l} = (-E_8) \oplus H \oplus \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

A special case of Froyshov's theorem

▶ X: a closed connected oriented smooth 4-manifold s.t.

$$b^+(X) + \dim_{\mathbb{Z}/2}(\mathsf{tor} H_1(X; \mathbb{Z}) \otimes \mathbb{Z}/2) \le 2.$$
 (1)

ightharpoonup l o X: a nontrivial \mathbb{Z} -bundle.

If
$$Q_{X,l}$$
 is definite $\Rightarrow Q_{X,l} \sim$ diagonal.

- ▶ The original form of Froyshov's theorem is:
 - If X with $\partial X = Y : \mathbb{Z}HS^3$ satisfies (1) & $Q_{X,l}$ is nonstandard definite $\Rightarrow \delta_0 : HF^4(Y; \mathbb{Z}/2) \to \mathbb{Z}/2$ is non-zero.
- $Y = S^3 \Rightarrow HF^4(Y; \mathbb{Z}/2) = 0 \Rightarrow \text{The above result.}$

- ▶ The proof uses SO(3)-Yang-Mills theory on a SO(3)-bundle V.
- ▶ Twisted reducibles (stabilizer $\cong \mathbb{Z}/2$) play an important role. V is reduced to $\lambda \oplus E$, where E is an O(2)-bundle,

 $\lambda = \det E$: a nontrivial \mathbb{R} -bundle.

- Cf [Fintushel-Stern'84]'s proof of Donaldson's theorem also used SO(3)-Yang-Mills.
 - \longrightarrow Abelian reducibles (stabilizer \cong U(1)) V is reduced to $\mathbb{R} \oplus L$, where L is a U(1)-bundle.
 - Donaldson's theorem is proved by Seiberg-Witten theory, too.

Question

Can we prove Froyshov's result by Seiberg-Witten theory?

→ Our result would be an answer.

Theorem 1.(N.)

- ▶ X: a closed connected ori. smooth 4-manifold.
- ▶ $l \to X$: a nontrivial \mathbb{Z} -bdl. s.t. $w_1(\lambda)^2 = 0$, where $\lambda = l \otimes \mathbb{R}$.

If $Q_{X,l}$ is definite $\Rightarrow Q_{X,l} \sim$ diagonal.

Cf. Froyshov's theorem

- ightharpoonup X: s.t. $b^+(X) + \dim_{\mathbb{Z}/2}(\mathsf{tor} H_1(X;\mathbb{Z}) \otimes \mathbb{Z}/2) \leq 2$.
- ▶ $l \rightarrow X$: a nontrivial \mathbb{Z} -bundle.

If $Q_{X,l}$ is definite $\Rightarrow Q_{X,l} \sim$ diagonal.

Theorem 1.(N.)

- ▶ X: a closed connected ori. smooth 4-manifold.
- ▶ $l \to X$: a nontrivial \mathbb{Z} -bdl. s.t. $w_1(\lambda)^2 = 0$, where $\lambda = l \otimes \mathbb{R}$.

If $Q_{X,l}$ is definite $\Rightarrow Q_{X,l} \sim$ diagonal.

▶ For the proof, a variant of Seiberg-Witten $\left(U(1)\text{-monopole}\right)$ equations is introduced

$$\longrightarrow \operatorname{Pin}^-(2)$$
-monopole equations

- ▶ $Pin^-(2)$ -monopole eqns are defined on a $Spin^{c_-}$ -structure.
- ▶ Spin^{c} --structure is a $\mathrm{Pin}^{-}(2)$ -variant of Spin^{c} -str. defined by M.Furuta, whose complex structure is "twisted along l".

- ► The moduli space of Pin⁻(2)-monopoles is compact.
 - \longrightarrow Bauer-Furuta theory can be developed.

Furuta's theorem

Let X be a closed ori. smooth spin 4-manifold with indefinite Q_X .

$$b_2(X) \ge \frac{10}{8} |\operatorname{sign}(X)| + 2.$$

Theorem 2(N.)

Let X be a closed connected ori. smooth 4-manifold. For any nontrivial \mathbb{Z} -bundle $l \to X$ s.t. $w_1(\lambda)^2 = w_2(X)$, where $\lambda = l \otimes \mathbb{R}$,

$$b_2(X; l) \ge \frac{10}{8} |\operatorname{sign}(X)|,$$

where $b_2(X; l) = \operatorname{rank} H_2(X; \lambda)$.

A new class of nonsmoothable 4-manifolds

Recall fundamental theorems.

- 1. [Rohlin] X^4 : closed spin $\Rightarrow sign(X) \equiv 0 \mod 16$.
- 2. [Donaldson] Definite \Rightarrow diagonal.
- 3. [Furuta] The 10/8-inequality
- 3' [Furuta-Kametani] The strong 10/8-inequality in the case when $b_1>0$.

Corollary 1(N.)

- \exists Nonsmoothable closed indefinite spin 4-manifolds satisfying
 - $ightharpoonup \operatorname{sign}(X) \equiv 0 \mod 16$,
 - ▶ the strong 10/8-inequality.

Proof

- ▶ Let M be T^4 or $T^2 \times S^2$. $\Rightarrow Q_{T^4} = 3H$, $Q_{T^2 \times S^2} = H$.
- ▶ If $l' \to M$ is any nontrivial \mathbb{Z} -bundle, ⇒ $b_2(M; l') = 0 \& w_1(l' \otimes \mathbb{R})^2 = 0$.
- ▶ Let V be a topological 4-manifold s.t. $\pi_1 V = 1$, Q_V is even and definite, $\operatorname{sign}(V) \equiv 0 \mod 16$. ($\Rightarrow V$ is spin.)
- ▶ Choose a large k s.t. X = V # kM satisfies the strong 10/8-inequality.
- ▶ Let $l := \underline{\mathbb{Z}} \# k l' \to X$. $\Rightarrow Q_{X,l} = Q_V$, $w_1(l \otimes \mathbb{R})^2 = 0$.
- ▶ Suppose X is smooth. By Theorem 1, $Q_{X,l} = Q_V \sim \text{diagonal.}$ Contradiction.

$\operatorname{Spin}^{c_{-}}(4)$

$$\operatorname{Pin}^-(2) = \langle \operatorname{U}(1), j \rangle = \operatorname{U}(1) \cup j \operatorname{U}(1) \subset \operatorname{Sp}(1) \subset \mathbb{H}.$$

Two-to-one homomorphism $Pin^-(2) \rightarrow O(2)$

$$z \in \mathrm{U}(1) \subset \mathrm{Pin}^{-}(2) \mapsto z^{2} \in \mathrm{U}(1) \cong \mathrm{SO}(2) \subset \mathrm{O}(2),$$

$$j \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Definition $\operatorname{Spin}^{c_{-}}(4) := \operatorname{Spin}(4) \times_{\{\pm 1\}} \operatorname{Pin}^{-}(2)$.

- Arr Spin^c-(4)/Pin⁻(2) = Spin(4)/{±1} = SO(4)
- ► $\operatorname{Spin}^{c_{-}}(4)/\operatorname{Spin}(4) = \operatorname{O}(2)$
- ► The id. compo. of $\mathrm{Spin}^{c-}(4) = \mathrm{Spin}(4) \times_{\{\pm 1\}} \mathrm{U}(1)$ = $\mathrm{Spin}^{c}(4)$ $\mathrm{Spin}^{c-}(4)/\mathrm{Spin}^{c}(4) = {\pm 1}.$

$\mathrm{Spin}^{c_{-}}$ -structures

- ▶ X: an oriented Riemannian 4-manifold. $\longrightarrow Fr(X)$: The SO(4)-frame bundle.
- $\tilde{X}\stackrel{2:1}{\to} X$: nontrivial double covering, $l:=\tilde{X}\times_{\{\pm 1\}}\mathbb{Z}$

Spin^{c_-} -structure

A Spin^{c-} -structure on $\tilde{X} \to X$ is given by

- ▶ P: a Spin^c-(4)-bundle over X,
- $ightharpoonup P/\operatorname{Spin}^c(4) \stackrel{\cong}{\to} \tilde{X}$
- $ightharpoonup P/\operatorname{Pin}^-(2) \stackrel{\cong}{\to} Fr(X).$

Then we have

▶ $E = P/\operatorname{Spin}(4) \stackrel{\mathrm{O}(2)}{\to} X$: characteristic $\mathrm{O}(2)$ -bundle. $\longrightarrow l$ -coefficient Euler class $\tilde{c}_1(E) \in H^2(X;l)$. $H^2(X;l) \stackrel{\text{1:1}}{\longleftrightarrow} \{\mathrm{O}(2)\text{-bundle } E \text{ over } X \text{ s.t. } E/\operatorname{SO}(2) \cong \tilde{X}\}/\mathrm{iso}$.

- $ightharpoonup P \stackrel{{
 m Spin}^c(4)}{\longrightarrow} \tilde{X}$ defines a ${
 m Spin}^c$ -structure on \tilde{X}
- ▶ $J = [1, j] \in \text{Spin}(4) \times_{\{\pm 1\}} \text{Pin}^{-}(2) = \text{Spin}^{c_{-}}(4).$

A Spin^{c-} -str. on X can be given by the data

lacksquare A Spin^c -structure on $ilde{X}$

$$(P_c \stackrel{\mathrm{Spin}^c(4)}{\longrightarrow} \tilde{X}, \ P_c/\operatorname{U}(1) \stackrel{\cong}{\rightarrow} Fr(\tilde{X}))$$

- ▶ A fiber preserving diffeo. $J \colon P_c \to P_c$ covering $\iota \colon \tilde{X} \to \tilde{X}$ s.t.
 - $J^2 = -1$
 - ▶ $J(pg) = J(p)\bar{g}$, where

$$\mathrm{Spin}^c(4) = \mathrm{Spin}(4) \times_{\{\pm 1\}} \mathrm{U}(1) \ni g = [q,z] \mapsto \bar{g} = [q,z^{-1}]$$

J is NOT a $Spin^c(4)$ -bundle auto.

▶ J induces $\iota_* : Fr(\tilde{X}) \to Fr(\tilde{X})$

Define the action I on the spinor bundles:

$$\tilde{S}^{\pm} = P_c \times_{\operatorname{Spin}^c(4)} \mathbb{H}_{\pm} \curvearrowleft [J, j] =: I$$

- $\Rightarrow I^2 = 1 \& I$ is antilinear.
- $\Rightarrow S^{\pm} = \tilde{S}^{\pm}/I$ are the spinor bundles for the ${\rm Spin}^{c-}\text{-str.}$
- S^{\pm} are not complex bundles.

I induces an antilinear involution on $L = \det \tilde{S}^+$.

 \Rightarrow The characteristic O(2)-bundle E = L/I.

 $\mathrm{Pin}^-(2)$ -monopole on X=I-invariant Seiberg-Witten on \tilde{X}

In fact,
$$\mathcal{M}_{\mathrm{Pin}} = (\mathcal{M}_{SW})^I$$

Take the I-invariant part of the monopole map μ_{SW} on X. $\Rightarrow \operatorname{Pin}^-(2)$ -monopole map,

$$\mu \colon \mathcal{A} \times \Gamma(S^+) \to i\Omega^+(l \otimes \mathbb{R}) \times \Gamma(S^-)$$

where

 $\mathcal{A} = \{ \mathrm{O}(2) \text{-connections on } E \} \leftarrow \text{an affine sp. of } i\Omega^1(l \otimes \mathbb{R})$

Gauge symmetry

$$\begin{split} \mathcal{G} = & \{ f \in \operatorname{Map}(\tilde{X}, \operatorname{U}(1)) \, | \, f(\iota x) = f(x)^{-1} \} \\ = & \Gamma(\tilde{X} \times_{\{\pm 1\}} \operatorname{U}(1)), \end{split}$$

where $\{\pm 1\} \curvearrowright \mathrm{U}(1)$ by $z \mapsto z^{-1}$.

Moduli spaces

$$\mathcal{M} = \mu^{-1}(0)/\mathcal{G} \subset (\mathcal{A} \times \Gamma(S^+))/\mathcal{G}$$

Proposition

- ▶ M is compact.
- ► The virtual dimension of M:

$$d = \frac{1}{4}(\tilde{c}_1(E)^2 - \operatorname{sign}(X)) - (b_0^l - b_1^l + b_+^l).$$

where $b^l_{\bullet} = \operatorname{rank} H_{\bullet}(X; l)$.

- If l is nontrivial & X connected $\Rightarrow b_0^l = 0$.

Reducibles

- ▶ For $(A, \Phi) \in \mathcal{A} \times \Gamma(S^+)$, if $\Phi \not\equiv 0 \Rightarrow \mathcal{G}$ -action is free.
- ▶ The stabilizer of $(A, \Phi \equiv 0) = \{\pm 1\}$
- ▶ The elements of the form $(A, \Phi \equiv 0)$ are called reducibles.
- ▶ In general, { reducible solutions }/ $\mathcal{G} \cong T^{b_1^l} \subset \mathcal{M}$.

Cf. In the SW-case, the stabilizer of $(A,0) = S^1 \subset \operatorname{Map}(X,S^1)$.

Key difference

Ordinary SW case

• Reducible \rightarrow The stabilizer $= S^1$.

$$\mathcal{M}_{SW} \setminus \{ \text{reducibles} \} \subset (\mathcal{A} \times (\Gamma(S^+) \setminus \{0\})) / \mathcal{G}_{SW} \simeq B \mathcal{G}_{SW}$$
$$\simeq T^{b_1} \times \mathbb{C}\mathrm{P}^{\infty} \,.$$

$Pin^-(2)$ -monopole case

▶ Reducible \rightarrow The stabilizer = $\{\pm 1\}$.

$$\mathcal{M} \setminus \{ \text{reducibles} \} \subset (\mathcal{A} \times (\Gamma(S^+) \setminus \{0\})) / \mathcal{G} \simeq B\mathcal{G}$$

 $\simeq T^{b_1^l} \times \mathbb{R}P^{\infty}$.

Proof of Theorem 1

For simplicity, assume $b_1^l = 0$.

Lemma 1

 \forall characteristic elements w of $Q_{X,l}$,

$$|w^2| \ge b_2^l.$$

An element w in a unimodular lattice L is called *characteristic* if $w \cdot v \equiv v \cdot v \mod 2$ for $\forall v \in L$.

[Elkies '95]

 $L \subset \mathbb{R}^n$: unimodular lattice. If \forall characteristic element $w \in L$ satisfies $|w^2| \ge \operatorname{rank} L$, $\Rightarrow L \cong$ diagonal.

Lemma 1 & [Elkies '95] $\Rightarrow Q_{X,l} \sim \text{diagonal}$.

Lemma 2

If $w_1(l \otimes \mathbb{R})^2 = 0$ $\Rightarrow \forall$ characteristic element w, $\exists \operatorname{Spin}^{c_-}$ -str. s.t. $\tilde{c}_1(E) = w$.

Lemma 3

If $b_+^l = b_1^l = 0 \Rightarrow \dim \mathcal{M} \leq 0$ for $\forall \operatorname{Spin}^{c_-}$ -str.

Lemma 2 & $3 \Rightarrow \text{Lemma } 1$

$$0 \geq \dim \mathcal{M} = \frac{1}{4} (\tilde{c}_1(E)^2 - \mathrm{sign}(X)) - (b_0^l - b_1^l + b_+^l) = \frac{1}{4} (-|w^2| + b_2^l)$$

The structure of \mathcal{M} when $b_+(X;l)=0$

- ▶ Suppose a $Spin^{c_{-}}$ -structure (P, τ) on X is given.
- ▶ $b_1(X, l) = 0 \Rightarrow \exists^1 \text{ reducible class } \rho_0 \in \mathcal{M}$.
- ▶ Perturb the $\operatorname{Pin}^-(2)$ -monopole equations by adding $\eta \in \Omega^+(i\lambda)$ to the curvature equation. $\to F_A^+ = q(\phi) + \eta$.
- ▶ For generic η , $\mathcal{M} \setminus \{\rho_0\}$ is a d-dimensional manifold.
- ▶ Fix a small neighborhood $N(\rho_0)$ of $\{\rho_0\}$.

$$\Rightarrow N(\rho_0) \cong \mathbb{R}^d/\{\pm 1\} = \text{ a cone of } \mathbb{R}\mathrm{P}^{d-1}$$

Then $\overline{\mathcal{M}}:=\overline{\mathcal{M}\setminus N(\rho_0)}$ is a compact d-manifold & $\partial\overline{\mathcal{M}}=\mathbb{R}\mathrm{P}^{d-1}.$

- ▶ Note $\overline{\mathcal{M}} \subset (\mathcal{A} \times (\Gamma(S^+) \setminus \{0\})) / \mathcal{G} =: \mathcal{B}^*$.
- $\qquad \qquad \mathsf{Recall} \ \mathcal{B}^* \underset{h.e.}{\simeq} T^{b_1(X;l)} \times \mathbb{R}\mathrm{P}^{\infty}.$

Lemma 3

If $b_+^l = 0$ & $b_1^l = 0 \Rightarrow d = \dim \mathcal{M} \leq 0$.

Proof

- ▶ Suppose d > 0.
- ▶ Recall $\overline{\mathcal{M}}$ is a compact d-manifold s.t. $\partial \overline{\mathcal{M}} = \mathbb{R}P^{d-1}$.
- ▶ $\exists C \in H^{d-1}(\mathcal{B}^*; \mathbb{Z}/2) \cong H^{d-1}(\mathbb{R}P^{\infty}; \mathbb{Z}/2)$ s.t. $\langle C, [\partial \overline{\mathcal{M}}] \rangle \neq 0. \Rightarrow$ Contradiction.

The outline of the proof of Theorem 2

- ▶ If $E = \underline{\mathbb{R}} \oplus \lambda \Rightarrow \operatorname{Spin}^{c_-}$ -structure on (X, E) has the larger symmetry $\mathcal{G}' = \Gamma(\tilde{X} \times_{\{\pm 1\}} \operatorname{Pin}^-(2))$.
- ▶ For simplicity, assume $b_1(X; l) = 0$.
- ▶ Then, by taking finite dimensional approximation of the monopole map, we obtain a proper \mathbb{Z}_4 -equivariant map

$$f : \tilde{\mathbb{R}}^m \oplus \mathbb{C}_1^{n+k} \to \tilde{\mathbb{R}}^{m+b} \oplus \mathbb{C}_1^n,$$

where

- $ightharpoonup \widetilde{\mathbb{R}}$ is \mathbb{R} on which \mathbb{Z}_4 acts via $\mathbb{Z}_4 o \mathbb{Z}_2 = \{\pm 1\} \curvearrowright \mathbb{R}$,
- $ightharpoonup \mathbb{C}_1$ is \mathbb{C} on which \mathbb{Z}_4 acts by multiplication of i,
- $k = -\operatorname{sign}(X)/8$, $b = b_+(X; \lambda)$, m, n are some integers.

Here, \mathbb{Z}_4 is generated by the constant section

$$j \in \mathcal{G}' = \Gamma(\tilde{X} \times_{\{\pm 1\}} \operatorname{Pin}^{-}(2)).$$

▶ By using the techniques of equivariant homotopy theory, e.g., tom Dieck's character formula, we can see that any proper \mathbb{Z}_4 -map of the form,

$$f \colon \tilde{\mathbb{R}}^m \oplus \mathbb{C}^{n+k}_1 \to \tilde{\mathbb{R}}^{m+b} \oplus \mathbb{C}^n_1,$$

should satisfy $b \ge k$.

► That is.

$$b_+(X;\lambda) \ge -\frac{1}{8}\operatorname{sign}(X).$$

Finite dimensional approximation

▶ Take a flat connection A_0 on $\mathbb{R} \oplus \lambda$.

$Pin^{-}(2)$ -monopole map

$$\mu \colon \Omega^1(i\lambda) \oplus \Gamma(S^+) \to (\Omega^0 \oplus \Omega^+)(i\lambda) \oplus \Gamma(S^-) =: \mathcal{W},$$

$$(a,\phi) \mapsto (d^*a, F_{A_0} + d^+a + q(\phi), D_{A_0 + a}\phi).$$

- Let $l(a,\phi) := (d^*a, d^+a, D_{A_0}\phi)$ be the linear part of μ . $\to l$ is Fredholm.
- $c = \mu l$: quadratic, compact.
- ▶ Choose a finite dim. subspace $U \subset \mathcal{W}$ s.t. $\dim U \gg 1$, $U \supset (\operatorname{im} l)^{\perp}$
- ▶ Let $V := l^{-1}(U)$ & $p \colon \mathcal{W} \to U$ be the L^2 -projection.
- ▶ Define $f: V \to U$ by f = l + pc. $\to f$: proper, \mathbb{Z}_4 -equiv.

$Pin^-(2)$ -monopole invariants

If $b_+^l \geq 1 \Rightarrow$ by perturbing the eqns

- M contains no reducible.
- M is a finite dimensional manifold.

$$\mathcal{M} \subset (\mathcal{A}_{\mathrm{O}(2)} \times (\Gamma(S^+) \setminus \{0\}))/\mathcal{G} \underset{h.e}{\simeq} T^{b_1^l} \times \mathbb{R}\mathrm{P}^{\infty}$$

$$H^*(\mathbb{R}\mathrm{P}^\infty \times T^{b_1^l}; \mathbb{Z}_2) = \mathbb{Z}_2[\eta] \otimes \bigwedge \mathbb{Z}_2^{b_1^l}$$
, where η : generator of $H^1(\mathbb{R}\mathrm{P}^\infty)$.

$Pin^{-}(2)$ -monopole invariants

Define $\mathrm{SW}^{\mathrm{Pin}} \colon \mathbb{Z}_2[\eta] \otimes \bigwedge \mathbb{Z}_2^{b_1^l} o \mathbb{Z}_2$ by

$$SW^{Pin}(\eta^k \otimes t) = \langle \eta^k \otimes t, [\mathcal{M}] \rangle.$$

If $b_+^l \geq 2 \Rightarrow \mathrm{SW}^{\mathrm{Pin}}$ is a diffeomorphism invariant of X.

Exotic structures

- $E(1) = \mathbb{C}P^2 \# 9\overline{\mathbb{C}P}^2.$
- ► $E(n) = \underbrace{E(1)\#_f \cdots \#_f E(1)}_{n}$. Note E(2) = K3.

Theorem(due to many people)

 $\exists \infty$ many exotic smooth structures on E(n) for $n \ge 1$.

- Construction:
 - Log transform.
 - Knot surgery ([Fintushel-Stern,'98])
- Method to detect exotic structures
 - ▶ Donaldson invariants ← ASD equation
 - ► Seiberg-Witten invariants ← SW equations

Exotic small manifolds

[Kotchick, '89] Let B be the Barlow surface.

$$B \cong_{\text{homeo.}} \mathbb{C}P^2 \# 8\overline{\mathbb{C}P}^2 \text{ but } B \ncong_{\text{diffeo.}} \mathbb{C}P^2 \# 8\overline{\mathbb{C}P}^2.$$

Method: Donaldson inv.

[J.Park,'03] \exists exotic structures on $\mathbb{C}P^2 \# 7\overline{\mathbb{C}P}^2$.

- Construction: Rational blow down [Fintushel-Stern,'97]
- Method: SW inv.

At present, it is known \exists exotic structures on $\mathbb{C}P^2 \# 2\overline{\mathbb{C}P}^2$.

Stabilization & Vanishing results

[Wall, '64]

$$\begin{split} \pi_1 X_1 &= \pi_1 X_2 = 1 \ \& \ Q_{X_1} \cong Q_{X_2} \Rightarrow X_1 \underset{\text{homeo.}}{\cong} X_2. \text{ Possibly } X_1 \underset{\text{diffeo.}}{\not\cong} X_2 \\ &\Rightarrow \ \exists k \text{ s.t. } X_1 \# k(S^2 \times S^2) \underset{\text{diffeo.}}{\cong} X_2 \# k(S^2 \times S^2). \end{split}$$

Theorem ([Donaldson, Witten])

$$X_1$$
, X_2 : $b_+(X_1) > 0$, $b_+(X_2) > 0$.

Then all of Donaldson invariants & Seiberg-Witten invariants of $X_1 \# X_2$ are 0.

 X_1 , X_2 : exotic pair, Y with $b_+(Y)>0$ \Rightarrow Cannot prove the pair $X_1\#Y$ and $X_2\#Y$ is an exotic pair by using Donaldson & SW inv.

On the other hand,

[Fintushel-Stern, Kotschick-Morgan-Taubes, Froyshov]

- Y_1, \ldots, Y_k : $b_1(Y_i) = b_+(Y_i) = 0$ e.g., $Y_i = \overline{\mathbb{CP}}^2$, $\mathbb{Q}HS^4$ or $Y_i = S^1 \times S^3$.
- $X: SW(X) \neq 0$
- \Rightarrow SW $(X \# Y_1 \# \cdots \# Y_k) \neq 0$.

By using this, we can prove

$$\exists$$
exotic str. on $E(n)\#Y_1\#\cdots\#Y_k$.

By using SW^Pin , we can obtain

Theorem (N.)

For $\forall k, g_i \geq 1 \ (1 \leq i \leq k)$,

 $\exists \infty \text{ many exotic structures on } E(n) \# (S^2 \times \Sigma_{g_1}) \# \cdots \# (S^2 \times \Sigma_{g_k}).$

- ▶ $Pin^{-}(2)$ -monopole = SW twisted along a local coefficient.
- ► For some local coefficient l.

$$b_+^l(S^2 \times \Sigma_g) := \dim H_+(S^2 \times \Sigma_g; l) = 0.$$

$$\Rightarrow$$
 SW^{Pin} $(E(n)\#(S^2\times\Sigma_{g_1})\#\cdots\#(S^2\times\Sigma_{g_k}))\neq 0.$

Theorem (N.)

- ▶ X: 4-manifold, for a Spin^c-str. c_1 , SW-inv is odd.
- ightharpoonup Y: 4-manifold with nontrivial double covering \tilde{Y} , s.t.
 - ▶ ∃ positive scalar curvature metric
 - ▶ $\exists \ \mathrm{Spin}^{c_{-}}$ -str. c_{2} s.t. $b_{+}^{l} = 0$ & v-dim $\mathcal{M} = b_{1}^{l}$, for $l = \tilde{Y} \times_{\{\pm 1\}} \mathbb{Z}$. $\Rightarrow \mathcal{M} = \{ \mathrm{reducibles\ only} \} / \mathcal{G} \cong T^{b_{1}^{l}}$ & transversal

For $c_1 \# c_2$ over X # Y,

$$SW^{Pin}(\eta \otimes t^{\mathsf{top}}) \neq 0,$$

where t^{top} is the generator of $H^{b_1^l}(T^{b_1^l})$.

- ▶ The virtual dimension of $\mathcal{M}(X\#Y, c_1\#c_2)$ is positive.
- ▶ The ordinary SW & stable cohomotopy SW of X#Y are 0. (∴ Y admits a PSC metric.)

More exotic connected sums

By using stable cohomotopy SW invariants ([Bauer-Furuta]),

- $\underbrace{K3\#\cdots\#K3}_{k}: \ 1 \leq k \leq 4 \Rightarrow \exists \mathsf{exotic}$
- ► $X = E(n_1) \# E(n_2) \# E(n_3) \# E(n_4)$ n_i : even, and $b_+(X) \equiv 4 \Rightarrow \exists \text{exotic}$
- ▶ [Sasahira] $M_1, M_2 = K3$ or $\Sigma_g \times \Sigma_{g'}$ (g, g'): odd) ⇒ \exists exotic str. on $K3\#M_1$ and $K3\#M_1\#M_2$.

The genus of embedded surfaces in 4-manifolds

Theorem

- ▶ X: closed ori. 4-manifold with $b_+ \ge 2$.
- ▶ c: Spin^c-structure on X.
 L: the determinant line bundle of c.
- $\Sigma \subset X$: connected embedded surface s.t. $[\Sigma] \in H_2(X; \mathbb{Z}), [\Sigma] \cdot [\Sigma] \geq 0$.

If $\mathrm{SW}(X,c) \neq 0$ or stable cohomotopy $\mathrm{SW}(X,c) \neq 0$, then

$$-\chi(\Sigma) = 2g - 2 \ge |c_1(L)[\Sigma]| + [\Sigma] \cdot [\Sigma].$$

► This is due to: [Kronheimer-Mrowka], [Fintushel-Stern], [Morgan-Szabo-Taubes], [Ozsvath-Szabo], [Furuta-Kametani-Matsue-Minami]...

Embedded surfaces representing a class in $H_2(X; l)$

• $\tilde{X} \to X$: nontrivial double covering, $l = \tilde{X} \times_{\{\pm 1\}} \mathbb{Z}$.

Let us consider a connected surface Σ s.t.

- $i: \Sigma \hookrightarrow X$: embedding
- ▶ (The orientation coefficient of Σ) = i^*l

Proposition

For $\forall \alpha \in H_2(X; l)$, there exists Σ as above.

Remark

 $ightharpoonup \Sigma$ may be orientable or nonorientable.

Theorem (N.)

- (X, l, Σ) as above. Suppose $b_+^l \ge 2$.
- Let $[\Sigma] \in H_2(X; l)$. Suppose $[\Sigma] \cdot [\Sigma] \ge 0$, & $[\Sigma]$ is not a torsion.
- $c: \operatorname{Spin}^{c_{-}}\operatorname{-structure} \to \operatorname{The} \operatorname{associated} \operatorname{O}(2)\operatorname{-bundle} E$
- $ightharpoonup ilde{c}$: the Spin^c -structure on $ilde{X}$ induced from c.

If one of the following is nonzero

- $ightharpoonup SW^{Pin}$ or stable cohomotopy SW^{Pin} of (X,c),
- ightharpoonup SW or stable cohomotopy SW of (\tilde{X}, \tilde{c}) ,

then

$$-\chi(\Sigma) \ge [\Sigma] \cdot [\Sigma] + |\tilde{c}_1(E) \cdot [\Sigma]|.$$

Example

- $X = K3\#(S^2 \times \Sigma_1)\#\cdots\#(S^2 \times \Sigma_k), (g_i \ge 1).$
- ▶ $\exists l \text{ s.t. } H_2(X;l) = H_2(K3;\mathbb{Z}) \oplus \text{Torsion.}$
- ▶ $\exists c \text{ s.t. } \tilde{c}_1(E) = 0 \& \text{SW}^{\text{Pin}}(X, c) \neq 0.$

For $\Sigma \hookrightarrow X$ s.t. $[\Sigma] \in H_2(X;l)$ & $[\Sigma] \cdot [\Sigma] \geq 0$ & $[\Sigma]$ is not a torsion,

$$-\chi(\Sigma) \ge [\Sigma] \cdot [\Sigma].$$

Final remarks for future researches

- ▶ Pin⁻(2)-monopole invariants
 - Calculation, gluing formula, stable cohomotopy refinements
- ▶ Pin⁻(2)-monopole on branched coverings
 - Exotic involutions
 - Smooth inequivalent but topologically equivalent embedded surfaces Cf. [Fintushel-Stern-Snukujian], [H.J.Kim-Ruberman]
- ▶ When \ddot{X} : symplectic & $I^*\omega = -\omega$, $\mathrm{Pin}^-(2)\text{-monopole inv.} = \text{real Gromov-Witten inv.}$
 - Cf. [Tian-Wang]
- ► Pin⁻(2)-monopole Floer theory? Pin⁻(2) Heegaard Floer theory?
- ► "Witten conjecture" for Pin⁻(2)-monopole invariants?
 - ► [Feehan-Leness] SW = Donaldson Pin⁻(2)-monopole inv. = ???