Pin~ (2)-monopole invariants and applications

Nobuhiro Nakamura

Gakushuin university

Nov 15, 2012

Nobuhiro Nakamura Pin~ (2)-monopole invariants and applications



Introduction

» E(n): elliptic surf. (fiber sum of E(1) = CP?#9CP")
eg., E(2)=K3.

Fact ‘ Joo many exotic structures on E(n). ‘

» Construction of exotic structures
- Log transformations
- [Fintushel-Stern] Knot surgery
» To detect exotic structures

- Donaldson invariants
- Seiberg-Witten invariants
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Main Theorem

Main Theorem (N.)
ForVk, g >1 (1 <i<k),

Joo many exotic structures on E(n)#(S? x X4, )# - #(S% x B,,).

» Construction of exotic structures
- Log transformations, Knot surgery

» To detect exotic structures
— Pin™ (2)-monopole invariants

Cf. [Wall]
Even if E(n) is an exotic E(n),

3k, E(n)#k(S* x §?) - E(n)#k(5% x §%)
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Connected sums & Exotic structures

In general, it might not be easy to find an exotic structures on
connected sums, because
[Fact]

If by (X1), b4(X2) > 1,
= all of Donaldson inv & SW inv of X;#X5 are 0.

e.g., D inv & SW inv of E(n)#(S? x ¥,) are 0.
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[Fintushel-Stern, Kotschick-Morgan-Taubes, Froyshov]
» Vi, Y (V) = b (Yi) =0o0r Y; = S x S3.
» X: SW(X) #£0

= SW(X#Y1# - #Y3) #0.

= Jexotic str. on E(n)#Y1# - - #Y%.

Our Main theorem is an analogy of this.

- For some local coefficient [,
bl (S? x 2y) := dim H4 (5% x £4;1) = 0.

- Pin™ (2)-monopole = SW twisted along a local coefficient.
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More exotic connected sums

By using stable cohomotopy SW invariants ([Bauer-Furutal),
» K3#---#K3: 1 <k <4 = dexotic
—_———

k

» X = E(ny)#E(ng)#E(n3)#E(ng)
n;: even, and by (X) g) 4 = Jexotic

» [Sasahira] My, My = K3 or ¥y x Xy (g, ¢': odd)
= dexotic str. on K3#M; and K3# M # Ms>.
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I
Pin™ (2)-monopole equations

Spin©--structure

> Spin“ (4) = Spin(4) x 113 Pin™(2),

Pin™ (2) = U(1) U5 U(1) C Sp(1)
» Spin“-(4)/Pin~(2) = Spin(4)/{£1} = SO(4)
> Spin“~(4) D Spin®(4) = Spin(4) x (413 U(1)

Spin“~(4)/ Spin©(4) = {£1}.
Let X be a closed ori. Riemannian 4-manifold with (nontrivial)
double covering X 2 x

Definition
Spin“~-structure on X is a Spin“~ (4)-bundle P over X with

P/Pin~(2) 5 Fr(X), P/Spin“(4) > X
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Characteristic O(2)-bundle

» Spin“-(4)/Spin(4) = Pin~(2)/{£1} = O(2)

= E = P/Spin(4) is an O(2)-bundle
— Characteristic O(2)-bundle
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P~JJ?=—

Spin°(4)
Spin“— (4) P/Spin®(4) = X~ 1,12 = id ¢
/
X
> P Spint (4) X defines a Spin®-structure on X

» J =[1,j] € Spin(4) x 413 Pin™(2) = Spin“~ (4).
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A Spin“—-str. on X is given by the data

» A Spin®structure on X
(2 % pu) S (X))
> A fiber preserving diffeo. J: P, — P, covering 1: X — X s.t.
> J2=-1
> J(pg) = J(p)g, where
Spin®(4) = Spin(4) x (413 U(1) 3 g = [g,2] = g = [¢,27"]

J is NOT a Spin®(4)-bundle auto.
> J induces 1,: Fr(X) — Fr(X)
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Define the action I on the spinor bundles:
gi =P X Spin®(4) Hy A [‘]7.7] =1

= % = 1~& I is antilinear.
= ST = S* /T are the spinor bundles for the Spin®—-str.
S* are not complex bundles.

I induces an antilinear involution on L = det S*.
= The characteristic O(2)-bundle E = L/I.

Pin~ (2)-monopole on X = I-invariant Seiberg-Witten on X

In fact, Mpiy = (Msw)!
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Pin™ (2)-monopole equations
For O(2)-connection A on E and ® € T'(S™),

Dad =0,
Fi=q(®).

Gauge group for Pin™ (2)-monopole

G =T(X x41y U(1))
where {£1} acts on U(1) by complex conjugation.

Pin™ (2)-monopole moduli space

M = {solutions}/G
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Remark

> If X — X is a trivial covering

S . .
= P pm ) X of a Spin“—-str. c is reduced to a
Spin©(4 )—bundle
— Spin®structure ¢ on X

= |Pin™ (2)-monopole on ¢ = SW on ¢

» Conversely, if it is given a Spin®-structure

Spin® (4)

(Pe — X,P./U(1) = Fr(X))

= Pe Xspine(4) Spin“—(4) gives a Spin“—-str. on the trivial
double covering X — X.
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» The G-action on (A, ®) with ® # 0 is free. — irreducible
» X: nontrivial = the stabilizer of (A, ® = 0) is {#1}.
— {+1}-reducible
- X: trivial = the stabilizer of (A, ® = 0) is S'. — S'-reducible
> Let 1:= X x (413 Z.
If bl+ = dim H*(X;I) > 1 = by perturbing the eqns

» M contains no reducible,
» M is a finite dimensional compact manifold.

» X: nontrivial = M may be nonorientable.

X : nontrivial =
M C ((T(S1)\ 0) x {connections on E})/G = RP> x T

X ¢ trivial =

M c((T(ST)\ 0) x {connections on E})/G = CP>™ xT"
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Suppose X: nontrivial
L
H*(RP*™ x TV Zo) =Zan] ® /\Zgl, where 7: generator of H!(RP>).

Pin™ (2)-monopole invariants
. !
Define SWP™: Zy[n] @ \Z5 — Zs by

SWPR(E @ t) = (ff @ t,[M]).

X: trivial = May assume SWF" = SW.
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Theorem 1

» X: 4-manifold, for a Spin®str. ¢}, SW-inv is odd.
Let ¢; be the Spin“—-str. associated to ¢

» Y 4-manifold with double covering }7, s.t.

»  positive scalar curvature metric
» 3 Spin“—-str. ¢y .
s.t. bﬂr =0 & v-dim M = bf, forl =Y X {41} 7.
= M = {reducibles only}/G = T" & transversal

For c1#co over X#Y,
SWH(n @ £97) # 0,
where £t°P is the generator of H% (Tbll).

» An example of Y = (52 x X, )# - #(S? x Z,,).
» Main theorem is a corollary of Theorem 1.
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Theorem 1
» X: 4-manifold, for a Spin®str. ¢}, SW-inv is odd.
Let ¢; be the Spin®~-str. associated to ¢

» Y 4-manifold with double covering }7, s.t.

»  positive scalar curvature metric
» 3 Spin“—-str. ¢y .
s.t. bﬂr =0 & v-dim M = bf, forl =Y X {41} 7.
= M = {reducibles only} /G = T" & transversal

For c1#co over X#Y,
SWH (1 @ t°P) # 0,

where £t°P is the generator of H' (Tbll).

» The virtual dimension of M(X#Y, ¢c1#c2) is positive.

» The ordinary SW & stable cohomotopy SW of X#Y are 0.
(.Y admits a PSC metric.)
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N
Another application

Embedded surfaces representing a class in Ho(X;1)

» X — X: nontrivial double covering, I = X X{+1} Z-
Let us consider a connected surface ¥ s.t.

> i: X — X: embedding

» (The orientation coefficient of ) = i*!

— JFundamental class [X] € Ha(3;4*]).
Let o := i, [S] € Ha(X;1), where i, : Ha(S;i%1) — Ho(X;1).

Proposition
For Voo € Hy(X;1), there exists X as above.

Remark

» > may be orientable or nonorientable.
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Theorem 2 (N. 2011)

» (X,1,%) as above. Suppose b, > 2.
> Let [X] € Hao(X;1).
Suppose [X] - [X] > 0, & [X] is not a torsion.
» ¢ Spin“ -structure — The associated O(2)-bundle E

» ¢ the Spin®structure on X induced from c.

If one of the following is nonzero
» SWF or stable cohomotopy SWP™ of (X ¢),
» SW or stable cohomotopy SW of (X, ¢),
then
—x(X) = [E] - [X] + |en(E) - [X]],

where ¢ (E) € H%(X;1) is the Euler class of E defined in
H?(X;1), called the twisted 1st Chern class,
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Example

> X = K3#(S? x B)# - #(5? x Zy), (¢ > 1),
» dest. & (F) =0 & SWPR(X, ¢) # 0.
For ¥ — X sit. [¥] € Ho(X;1) & [£]-[X] > 0 & [X] is not a

torsion,
—x(2) = [X] - [Z].
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Proof of Theorem 1

Simplest case

» X1 = K3. For canonical Spin® str., SWg3 = *1.
Assume M x, = { Only one irreducible class }

> Xy =52 xT? | — X, nontrivial = b} =/, =0
= M, = {3'{£1}-reducible class }

Claim SWX™, o (n) # 0, n € H'(RP>): generator
To prove
[MXI#X2] = [RPl] € H,(RP™)

Strategy = Gluing
Make solutions on X1# X5 by gluing solutions on X7 and Xo.
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» X #Xo = X| Ugs X}, where X/ = X;\ D%

» Insert a long cylinder X U ([-T,T] x S3) U X}.

» Similarly, X1 = X] U ([-T,T] x S3)u D%,
Xy =D*U([-T,T] x S3) U X}.

For every solution (A4, ®) on X;, Xy or X1#X>,

(A, ®)|101x58 = (0,0) : S'-reducible on S3

[-T,T] x S3

bl | | X}
{0} x §3

x| | D
q | X
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> Let (A;,P;) be a solution on X; (i = 1,2).
» Cut off (A4;, ®;) near {0} x S3 to (0,0).— (A, ®)).

!/ !/ !/ !/ H
Glue .(Al’ ) and (4;, ) V'? approximate solution
a gluing parameter p € I' = §5". :>(A’ B )4 (AL D))
I" = stabilizer of (6,0) b e

= Can find an exact solution (A,,®,) near the approx. solution.
(A, ®,) is unique.

Summary
(A1, ®1) & (Ag, Py) = I'-family of solutions on X;# X,

{(A,m (I)p)}pEF
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Proposition
(Ap, @p) ~ (Ap, @) & [p] = [p'] € T'/(I'1 x T'g)
where

» I'; = stabilizer of (A4;, ;)

» I'y x 'y ~ T': multiplication

- (Aq,®q): irreducible =Ty =1
- (Ag, @3 =0): {£1}-reducible = I'y = {£1}
= {G-equiv. classes of (A,,®,)|p e '} =2 S /{+1}

In fact,
MXl#X2 = Sl/{il} ~ RP!
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