$Pin^{-}(2)$ -monopole invariants and applications

Nobuhiro Nakamura

Gakushuin university

Nov 15, 2012

Introduction

▶ E(n): elliptic surf. (fiber sum of $E(1) = \mathbb{C}P^2 \# 9\overline{\mathbb{C}P}^2$) e.g., E(2) = K3.

Fact $\exists \infty$ many exotic structures on E(n).

- Construction of exotic structures
 - Log transformations
 - [Fintushel-Stern] Knot surgery
- To detect exotic structures
 - Donaldson invariants
 - Seiberg-Witten invariants

Main Theorem

Main Theorem (N.)

For
$$\forall k$$
, $g_i \geq 1 \ (1 \leq i \leq k)$,

$$\exists \infty \text{ many exotic structures on } E(n) \# (S^2 \times \Sigma_{g_1}) \# \cdots \# (S^2 \times \Sigma_{g_k}).$$

- Construction of exotic structures
 - Log transformations, Knot surgery
- To detect exotic structures
 - $\longrightarrow Pin^{-}(2)$ -monopole invariants

Cf. [Wall]

Even if E(n)' is an exotic E(n),

$$\exists k, \ E(n)' \# k(S^2 \times S^2) \cong E(n) \# k(S^2 \times S^2)$$

Connected sums & Exotic structures

In general, it might not be easy to find an exotic structures on connected sums, because

[Fact]

If
$$b_+(X_1)$$
, $b_+(X_2) \ge 1$,

 \Rightarrow all of Donaldson inv & SW inv of $X_1 \# X_2$ are 0.

e.g., D inv & SW inv of $E(n)\#(S^2\times\Sigma_g)$ are 0.

[Fintushel-Stern, Kotschick-Morgan-Taubes, Froyshov]

- Y_1, \ldots, Y_k : $b_1(Y_i) = b_+(Y_i) = 0$ or $Y_i = S^1 \times S^3$.
- $X: SW(X) \neq 0$
- \Rightarrow SW $(X \# Y_1 \# \cdots \# Y_k) \neq 0$.
- $\Rightarrow \exists \mathsf{exotic} \; \mathsf{str.} \; \mathsf{on} \; E(n) \# Y_1 \# \cdots \# Y_k.$

Our Main theorem is an analogy of this.

- For some local coefficient l,

$$b_+^l(S^2 \times \Sigma_g) := \dim H_+(S^2 \times \Sigma_g; l) = 0.$$

- $Pin^-(2)$ -monopole = SW twisted along a local coefficient.

More exotic connected sums

By using stable cohomotopy SW invariants ([Bauer-Furuta]),

- $\underbrace{K3\#\cdots\#K3}_{k}: \ 1 \leq k \leq 4 \Rightarrow \exists \mathsf{exotic}$
- ► $X = E(n_1) \# E(n_2) \# E(n_3) \# E(n_4)$ n_i : even, and $b_+(X) \equiv 4 \Rightarrow \exists \text{exotic}$
- ▶ [Sasahira] $M_1, M_2 = K3$ or $\Sigma_g \times \Sigma_{g'}$ (g, g': odd) $\Rightarrow \exists \text{exotic str. on } K3\#M_1 \text{ and } K3\#M_1\#M_2.$

Contents

- Introduction
- ▶ $Pin^-(2)$ -monopole equations
 - $ightharpoonup \operatorname{Spin}^{c_{-}}$ -structure
 - ▶ Pin⁻(2)-monopole invariants
 - ▶ Theorem 1
- Another application
 - Embedded sufaces representing a class in $H_2(X; l)$
- Proof of Theorem 1

$Pin^{-}(2)$ -monopole equations

$\mathrm{Spin}^{\mathit{c}}$ --structure

- ► $\operatorname{Spin}^{c_{-}}(4) = \operatorname{Spin}(4) \times_{\{\pm 1\}} \operatorname{Pin}^{-}(2),$ $\operatorname{Pin}^{-}(2) = \operatorname{U}(1) \cup j \operatorname{U}(1) \subset \operatorname{Sp}(1)$
- $\operatorname{Spin}^{c_{-}}(4)/\operatorname{Pin}^{-}(2) = \operatorname{Spin}(4)/\{\pm 1\} = \operatorname{SO}(4)$
- ► $\operatorname{Spin}^{c_{-}}(4) \supset \operatorname{Spin}^{c}(4) = \operatorname{Spin}(4) \times_{\{\pm 1\}} \operatorname{U}(1)$ $\operatorname{Spin}^{c_{-}}(4) / \operatorname{Spin}^{c}(4) = \{\pm 1\}.$

Let X be a closed ori. Riemannian 4-manifold with (nontrivial) double covering $\tilde{X} \stackrel{2:1}{\to} X$

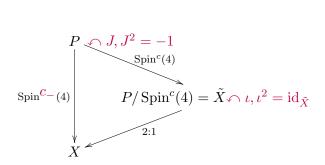
Definition

 $\operatorname{Spin}^{c_{-}}$ -structure on X is a $\operatorname{Spin}^{c_{-}}(4)$ -bundle P over X with

$$P/\operatorname{Pin}^-(2) \stackrel{\cong}{\to} Fr(X), \quad P/\operatorname{Spin}^c(4) \stackrel{\cong}{\to} \tilde{X}$$

Characteristic O(2)-bundle

- $ightharpoonup \operatorname{Spin}^{\mathbf{c}_{-}}(4)/\operatorname{Spin}(4) = \operatorname{Pin}^{-}(2)/\{\pm 1\} = \operatorname{O}(2)$
- $\Rightarrow E = P/\operatorname{Spin}(4)$ is an O(2)-bundle
- \rightarrow Characteristic O(2)-bundle



- $ightharpoonup P \stackrel{{
 m Spin}^c(4)}{\longrightarrow} \tilde{X}$ defines a ${
 m Spin}^c$ -structure on \tilde{X}
- ▶ $J = [1, j] \in \text{Spin}(4) \times_{\{\pm 1\}} \text{Pin}^{-}(2) = \text{Spin}^{c_{-}}(4).$

A $\mathrm{Spin}^{c_{-}}$ -str. on X is given by the data

lacksquare A Spin^c -structure on $ilde{X}$

$$(P_c \stackrel{\mathrm{Spin}^c(4)}{\longrightarrow} \tilde{X}, \ P_c/\operatorname{U}(1) \stackrel{\cong}{\rightarrow} Fr(\tilde{X}))$$

- ▶ A fiber preserving diffeo. $J \colon P_c \to P_c$ covering $\iota \colon \tilde{X} \to \tilde{X}$ s.t.
 - $J^2 = -1$
 - ▶ $J(pg) = J(p)\bar{g}$, where

$$\operatorname{Spin}^{c}(4) = \operatorname{Spin}(4) \times_{\{\pm 1\}} \operatorname{U}(1) \ni g = [q, z] \mapsto \bar{g} = [q, z^{-1}]$$

J is NOT a $Spin^c(4)$ -bundle auto.

▶ J induces $\iota_* \colon Fr(\tilde{X}) \to Fr(\tilde{X})$

Define the action I on the spinor bundles:

$$\tilde{S}^{\pm} = P_c \times_{\operatorname{Spin}^c(4)} \mathbb{H}_{\pm} \curvearrowleft [J, j] =: I$$

- $\Rightarrow I^2 = 1 \& I$ is antilinear.
- $\Rightarrow S^{\pm} = \tilde{S}^{\pm}/I$ are the spinor bundles for the ${\rm Spin}^{c_-}\text{-str.}$
- S^{\pm} are not complex bundles.

I induces an antilinear involution on $L = \det \tilde{S}^+$.

 \Rightarrow The characteristic O(2)-bundle E = L/I.

 $\mathrm{Pin}^-(2)$ -monopole on X=I-invariant Seiberg-Witten on $ilde{X}$

In fact, $\mathcal{M}_{\mathrm{Pin}} = (\mathcal{M}_{SW})^I$

$Pin^{-}(2)$ -monopole equations

For $\mathrm{O}(2)\text{-connection }A$ on E and $\Phi\in\Gamma(S^+)$,

$$\begin{cases} D_A \Phi = 0, \\ F_A^+ = q(\Phi). \end{cases}$$

Gauge group for $Pin^-(2)$ -monopole

$$\mathcal{G} = \Gamma(\tilde{X} \times_{\{\pm 1\}} \mathrm{U}(1))$$

where $\{\pm 1\}$ acts on U(1) by complex conjugation.

 $Pin^{-}(2)$ -monopole moduli space

$$\mathcal{M} = \{ solutions \} / \mathcal{G}$$

Remark

- If $\tilde{X} \to X$ is a trivial covering
 - $\Rightarrow P \xrightarrow{\mathrm{Spin}^c-(4)} X$ of a Spin^c- -str. c is reduced to a $\mathrm{Spin}^c(4)$ -bundle
 - $ightarrow \operatorname{Spin}^c$ -structure c' on X

$$\Rightarrow$$
 $\operatorname{Pin}^-(2)$ -monopole on $c = \operatorname{SW}$ on c'

ightharpoonup Conversely, if it is given a Spin^c -structure

$$(P_c \stackrel{\operatorname{Spin}^c(4)}{\longrightarrow} X, P_c / \operatorname{U}(1) \cong Fr(X))$$

 $\Rightarrow P_c \times_{\operatorname{Spin}^c(4)} \operatorname{Spin}^{c_-}(4)$ gives a $\operatorname{Spin}^{c_-}$ -str. on the trivial double covering $\tilde{X} \to X$.

- ▶ The \mathcal{G} -action on (A, Φ) with $\Phi \not\equiv 0$ is free. \rightarrow irreducible
- ullet \tilde{X} : nontrivial \Rightarrow the stabilizer of $(A,\Phi\equiv 0)$ is $\{\pm 1\}.$

$$ightarrow$$
 $\{\pm 1\}$ -reducible

- \tilde{X} : trivial \Rightarrow the stabilizer of $(A,\Phi\equiv 0)$ is $S^1.$ $\to S^1$ -reducible
- ▶ Let $l:=\tilde{X}\times_{\{\pm 1\}}\mathbb{Z}$. If $b_+^l=\dim H^+(X;l)\geq 1$ \Rightarrow by perturbing the eqns
 - ▶ M contains no reducible,
 - $ightharpoonup \mathcal{M}$ is a finite dimensional compact manifold.
 - \tilde{X} : nontrivial $\Rightarrow \mathcal{M}$ may be nonorientable.

$$\tilde{X}: \text{ nontrivial} \Rightarrow$$

$$\mathcal{M} \subset ((\Gamma(S^+) \setminus 0) \times \{\text{connections on } E\})/\mathcal{G} \underset{h.e.}{\simeq} \mathbb{R}\mathrm{P}^{\infty} \times T^{b_1^l}$$

$$\tilde{X}: \text{trivial} \Rightarrow$$

$$\mathcal{M} \subset ((\Gamma(S^+) \setminus 0) \times \{\text{connections on } E\})/\mathcal{G} \underset{h.e.}{\simeq} \mathbb{C}\mathrm{P}^{\infty} \times T^{b_1}$$

Suppose \tilde{X} : nontrivial

$$H^*(\mathbb{R}\mathrm{P}^\infty \times T^{b_1^l}; \mathbb{Z}_2) = \mathbb{Z}_2[\eta] \otimes \bigwedge \mathbb{Z}_2^{b_1^l}$$
, where η : generator of $H^1(\mathbb{R}\mathrm{P}^\infty)$.

$\operatorname{Pin}^-(2)$ -monopole invariants

Define
$$\mathrm{SW}^{\mathrm{Pin}} \colon \mathbb{Z}_2[\eta] \otimes \bigwedge \mathbb{Z}_2^{b_1^l} \to \mathbb{Z}_2$$
 by

$$SW^{Pin}(\eta^k \otimes t) = \langle \eta^k \otimes t, [\mathcal{M}] \rangle.$$

 \tilde{X} : trivial \Rightarrow May assume $SW^{Pin} = SW$.

Theorem 1

- ▶ X: 4-manifold, for a Spin^c -str. c_1' , SW-inv is odd. Let c_1 be the Spin^c --str. associated to c_1'
- ightharpoonup Y: 4-manifold with double covering \tilde{Y} , s.t.
 - ▶ ∃ positive scalar curvature metric
 - $$\begin{split} & \exists \ \mathrm{Spin}^{c_{-}}\text{-str.} \ c_{2} \\ & \text{s.t.} \ b_{+}^{l} = 0 \ \& \ \text{v-dim} \ \mathcal{M} = b_{1}^{l}, \ \text{for} \ l = \tilde{Y} \times_{\{\pm 1\}} \mathbb{Z}. \\ & \Rightarrow \mathcal{M} = \{\text{reducibles only}\}/\mathcal{G} \cong T^{b_{1}^{l}} \ \& \ \text{transversal} \end{split}$$

For $c_1 \# c_2$ over X # Y,

$$SW^{Pin}(\eta \otimes t^{\mathsf{top}}) \neq 0,$$

where t^{top} is the generator of $H^{b_1^l}(T^{b_1^l})$.

- ▶ An example of $Y = (S^2 \times \Sigma_{q_1}) \# \cdots \# (S^2 \times \Sigma_{q_k})$.
- ▶ Main theorem is a corollary of Theorem 1.

Theorem 1

- ▶ X: 4-manifold, for a Spin^c -str. c'_1 , SW-inv is odd. Let c_1 be the Spin^c -str. associated to c'_1
- ightharpoonup Y: 4-manifold with double covering \tilde{Y} , s.t.
 - ▶ ∃ positive scalar curvature metric

For $c_1 \# c_2$ over X # Y,

$$SW^{Pin}(\eta \otimes t^{\mathsf{top}}) \neq 0,$$

where t^{top} is the generator of $H^{b_1^l}(T^{b_1^l})$.

- ▶ The virtual dimension of $\mathcal{M}(X\#Y, c_1\#c_2)$ is positive.
- ▶ The ordinary SW & stable cohomotopy SW of X#Y are 0. (∴ Y admits a PSC metric.)

Another application

Embedded surfaces representing a class in $H_2(X; l)$

ullet $ilde{X} o X$: nontrivial double covering, $l = ilde{X} imes_{\{\pm 1\}} \mathbb{Z}$.

Let us consider a connected surface Σ s.t.

- ▶ $i: \Sigma \hookrightarrow X$: embedding
- ▶ (The orientation coefficient of Σ) = i^*l

Proposition

For $\forall \alpha \in H_2(X; l)$, there exists Σ as above.

Remark

 $ightharpoonup \Sigma$ may be orientable or nonorientable.

Theorem 2 (N. 2011)

- (X, l, Σ) as above. Suppose $b_+^l \ge 2$.
- Let $[\Sigma] \in H_2(X; l)$. Suppose $[\Sigma] \cdot [\Sigma] \ge 0$, & $[\Sigma]$ is not a torsion.
- ▶ $c: \operatorname{Spin}^{c_{-}}$ -structure $\to \operatorname{The}$ associated $\operatorname{O}(2)$ -bundle E
- ullet $ilde{c}$: the Spin^c -structure on $ilde{X}$ induced from c.

If one of the following is nonzero

- ▶ SW^{Pin} or stable cohomotopy SW^{Pin} of (X, c),
- ▶ SW or stable cohomotopy SW of (\tilde{X}, \tilde{c}) ,

then

$$-\chi(\Sigma) \ge [\Sigma] \cdot [\Sigma] + |\tilde{c}_1(E) \cdot [\Sigma]|,$$

where $\tilde{c}_1(E) \in H^2(X;l)$ is the Euler class of E defined in $H^2(X;l)$, called the *twisted 1st Chern class*,

Example

- $X = K3\#(S^2 \times \Sigma_1)\#\cdots \#(S^2 \times \Sigma_k), (g_i \ge 1).$
- ▶ $\exists c \text{ s.t. } \tilde{c}_1(E) = 0 \& \text{SW}^{\text{Pin}}(X, c) \neq 0.$

For $\Sigma \hookrightarrow X$ s.t. $[\Sigma] \in H_2(X;l)$ & $[\Sigma] \cdot [\Sigma] \geq 0$ & $[\Sigma]$ is not a torsion,

$$-\chi(\Sigma) \ge [\Sigma] \cdot [\Sigma].$$

Proof of Theorem 1

Simplest case

- ▶ $X_1 = K3$. For canonical Spin^c str., $\mathrm{SW}_{K3} = \pm 1$. Assume $\mathcal{M}_{X_1} = \{$ Only one irreducible class $\}$
- ▶ $X_2 = S^2 \times T^2$, $l \to X_2$ nontrivial $\Rightarrow b_1^l = b_+^l = 0$ $\Rightarrow \mathcal{M}_{X_2} = \{\exists^1 \{\pm 1\}\text{-reducible class }\}$

Claim $\mathrm{SW}^{\mathrm{Pin}}_{X_1 \# X_2}(\eta) \neq 0$, $\eta \in H^1(\mathbb{R}\mathrm{P}^\infty)$: generator

To prove

$$[\mathcal{M}_{X_1 \# X_2}] = [\mathbb{R}P^1] \in H_1(\mathbb{R}P^\infty)$$

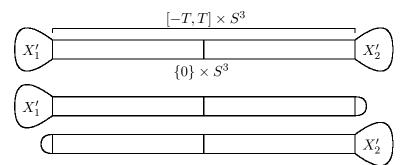
Strategy = Gluing

Make solutions on $X_1 \# X_2$ by gluing solutions on X_1 and X_2 .

- $X_1 \# X_2 = X_1' \cup_{S^3} X_2'$, where $X_i' = X_i \setminus D^4$.
- ▶ Insert a long cylinder $X_1' \cup ([-T, T] \times S^3) \cup X_2'$.
- ▶ Similarly, $X_1=X_1'\cup([-T,T]\times S^3)\cup D^4$, $X_2=D^4\cup([-T,T]\times S^3)\cup X_2'.$

 $T\gg 1$ For every solution (A,Φ) on X_1, X_2 or $X_1\# X_2$,

$$(A,\Phi)|_{\{0\}\times S^3}\approx (\theta,0):\ S^1$$
-reducible on S^3



- ▶ Let (A_i, Φ_i) be a solution on X_i (i = 1, 2).
- ▶ Cut off (A_i, Φ_i) near $\{0\} \times S^3$ to $(\theta, 0)$. $\longrightarrow (A'_i, \Phi'_i)$.

$$\begin{array}{c} \text{Glue } (A_1',\Phi_1') \text{ and } (A_1',\Phi_1') \text{ via} \\ \text{a gluing parameter } \rho \in \Gamma = S^1. \\ \hline \Gamma = \text{stabilizer of } (\theta,0) \end{array} \Rightarrow \begin{array}{c} \text{approximate solution} \\ (A_1',\Phi_1')\#_\rho(A_1',\Phi_1') \end{array}$$

 \Rightarrow Can find an exact solution (A_{ρ},Φ_{ρ}) near the approx. solution. (A_{ρ},Φ_{ρ}) is unique.

Summary

$$(A_1,\Phi_1)$$
 & (A_2,Φ_2) \Rightarrow Γ -family of solutions on $X_1\#X_2$
$$\{(A_\rho,\Phi_\rho)\}_{\rho\in\Gamma}$$

Proposition

$$(A_{\rho},\Phi_{\rho})\sim (A_{\rho'},\Phi_{\rho'})\Leftrightarrow [\rho]=[\rho']\in \Gamma/(\Gamma_1\times\Gamma_2)$$
 where

- $\Gamma_i = \mathsf{stabilizer} \ \mathsf{of} \ (A_i, \Phi_i)$
- $ightharpoonup \Gamma_1 imes \Gamma_2 \curvearrowright \Gamma$: multiplication

-
$$(A_1, \Phi_1)$$
: irreducible $\Rightarrow \Gamma_1 = 1$

-
$$(A_2, \Phi_2 = 0)$$
: $\{\pm 1\}$ -reducible $\Rightarrow \Gamma_2 = \{\pm 1\}$

$$\Rightarrow \{\mathcal{G}\text{-equiv. classes of } (A_{\rho},\Phi_{\rho}) \,|\, \rho \in \Gamma\} \cong S^1/\{\pm 1\}$$

In fact,

$$\mathcal{M}_{X_1 \# X_2} \cong S^1 / \{\pm 1\} \cong \mathbb{R}P^1$$

