Pin ${ }^{-}$(2)-monopole equations and intersection forms with local coefficients of 4-manifolds

Nobuhiro Nakamura

The University of Tokyo

November 30, 2010

Introduction

Froyshov's results
Main results

Applications
Pin ${ }^{-}(2)$-monopole equations
Spin ${ }^{c-}$-structures
Pin ${ }^{-}$(2)-monopole equations
Proof of Theorem 1 \& 2
Proof of Theorem 1
Proof of Theorem 2

- Let X be a closed oriented 4-manifold.

Topological invariants for X

- $\pi_{1} X$, cohomology ring, k-invariants...

Intersection form

$$
\begin{gathered}
Q_{X}: H^{2}(X ; \mathbb{Z}) / \text { torsion } \times H^{2}(X ; \mathbb{Z}) / \text { torsion } \rightarrow \mathbb{Z}, \\
(a, b) \mapsto\langle a \cup b,[X]\rangle
\end{gathered}
$$

- Q_{X} is a symmetric bilinear unimodular form.

[J.H.C.Whitehead '49]

If $\pi_{1} X=1$, the homotopy type of X is determined by the isomorphism class of Q_{X}.

In 4-dim. TOP
$\underline{\pi_{1} X=1}$

[Freedman '82]

The homeo type of X is determined by

- the iso. class of Q_{X} if Q_{X} is even,
- the iso. class of $Q_{X} \& \operatorname{ks}(X)$ if Q_{X} is odd.
$\underline{\pi_{1} X \neq 1}$
If $\pi_{1} X$ is "Good" \Rightarrow Freedman theory + Surgery theory.
\rightarrow Difficult.

In 4-dim. DIFF

- Let X be a closed oriented smooth 4-manifold.
[Rohlin]

$$
\text { If } X \text { is } \operatorname{spin} \Rightarrow \operatorname{sign}(X) \equiv 0 \bmod 16
$$

[Donaldson] If Q_{X} is definite $\Rightarrow Q_{X} \sim$ The diagonal form.
[Furuta] If X is spin \& Q_{X} is indefinite, then

$$
b_{2}(X) \geq \frac{10}{8}|\operatorname{sign}(X)|+2
$$

Refinements, variants
[Furuta-Kametani '05]
The strong $10 / 8$-inequality in the case when $b_{1}(X)>0$.
[Froyshov '10]
A local coefficient analogue of Donaldson's theorem.
local coefficients \leftrightarrow double coverings $\leftrightarrow H^{1}(X ; \mathbb{Z} / 2)$

Froyshov's results

4-manifolds and intersection forms with local coefficients, arXiv:1004.0077

- Suppose a double covering $\tilde{X} \rightarrow X$ is given.
- $l:=\tilde{X} \times_{\mathbb{Z}_{2}} \mathbb{Z}$, a \mathbb{Z}-bundle over X.
$\longrightarrow H^{*}(X ; l)$: l-coefficient cohomology.
- Note $l \otimes l=\mathbb{Z}$. The cup product

$$
\cup: H^{2}(X ; l) \times H^{2}(X ; l) \rightarrow H^{4}(X ; \mathbb{Z}) \cong \mathbb{Z}
$$

induces the intersection form with local coefficient

$$
Q_{X, l}: H^{2}(X ; l) / \text { torsion } \times H^{2}(X ; l) / \text { torsion } \rightarrow \mathbb{Z}
$$

- $Q_{X, l}$ is also a symmetric bilinear unimodular form.

A special case of Froyshov's theorem

- X : a closed connected oriented smooth 4-manifold s.t.

$$
\begin{equation*}
b^{+}(X)+\operatorname{dim}_{\mathbb{Z} / 2}\left(\operatorname{tor} H_{1}(X ; \mathbb{Z}) \otimes \mathbb{Z} / 2\right) \leq 2 \tag{1}
\end{equation*}
$$

- $l \rightarrow X$: a nontrivial \mathbb{Z}-bundle.

$$
\text { If } Q_{X, l} \text { is definite } \Rightarrow Q_{X, l} \sim \text { diagonal. }
$$

- The original form of Froyshov's theorem is:

$$
\begin{aligned}
& \text { If } X \text { with } \partial X=Y: \mathbb{Z} H S^{3} \text { satisfies }(1) \\
& \& Q_{X, l} \text { is nonstandard definite } \\
& \Rightarrow \delta_{0}: H F^{4}(Y ; \mathbb{Z} / 2) \rightarrow \mathbb{Z} / 2 \text { is non-zero. } \\
& \Rightarrow Y=S^{3} \Rightarrow H F^{4}(Y ; \mathbb{Z} / 2)=0 \Rightarrow \text { The above result. }
\end{aligned}
$$

- The proof uses the moduli space of $\mathrm{SO}(3)$-instantons on a SO(3)-bundle V.
- Twisted reducibles (stabilizer $\cong \mathbb{Z} / 2$) play an important role. V is reduced to $\lambda \oplus E$, where E is an $\mathrm{O}(2)$-bundle,

$$
\lambda=\operatorname{det} E \text { : nontrivial. }
$$

Cf [Fintushel-Stern'84] gives an alternative proof of Donaldson's theorem by using $\mathrm{SO}(3)$-instantons.
\longrightarrow Abelian reducibles (stabilizer $\cong \mathrm{U}(1)$)
V is reduced to $\mathbb{R} \oplus L$, where L is a $\mathrm{U}(1)$-bundle.

- Donaldson's theorem is proved by Seiberg-Witten theory, too.

Question

Can we prove Froyshov's result by Seiberg-Witten theory?
\longrightarrow Our result would be an answer.

Main results

Theorem 1.(N.)

- X : a closed connected ori. smooth 4-manifold.
- $l \rightarrow X$: a nontrivial \mathbb{Z}-bdl. s.t. $w_{1}(\lambda)^{2}=0$, where $\lambda=l \otimes \mathbb{R}$.

$$
\text { If } Q_{X, l} \text { is definite } \Rightarrow Q_{X, l} \sim \text { diagonal. }
$$

Cf. Froyshov's theorem

- $X:-$ s.t. $b^{+}(X)+\operatorname{dim}_{\mathbb{Z} / 2}\left(\operatorname{tor} H_{1}(X ; \mathbb{Z}) \otimes \mathbb{Z} / 2\right) \leq 2$.
- $l \rightarrow X$: a nontrivial \mathbb{Z}-bundle.

$$
\text { If } Q_{X, l} \text { is definite } \Rightarrow Q_{X, l} \sim \text { diagonal. }
$$

Main results

Theorem 1.(N.)

- X : a closed connected ori. smooth 4-manifold.
- $l \rightarrow X$: a nontrivial \mathbb{Z}-bdl. s.t. $w_{1}(\lambda)^{2}=0$, where $\lambda=l \otimes \mathbb{R}$.

$$
\text { If } Q_{X, l} \text { is definite } \Rightarrow Q_{X, l} \sim \text { diagonal. }
$$

- For the proof, we will introduce a variant of Seiberg-Witten equations
$\longrightarrow \mathrm{Pin}^{-}(2)$-monopole equations on $\mathrm{Spin}^{{ }^{c-}}$-structures on X.
- Spin^{c-}-structure is a $\mathrm{Pin}^{-}(2)$-variant of Spin^{c}-str. defined by M.Furuta, whose complex structure is "twisted along l ".
- The moduli space of $\mathrm{Pin}^{-}(2)$-monopoles is compact.
\longrightarrow Bauer-Furuta theory can be developed.
Furuta's theorem
Let X be a closed ori. smooth spin 4 -manifold with indefinite Q_{X}.

$$
b_{+}(X) \geq-\frac{\operatorname{sign}(X)}{8}+1
$$

Theorem 2(N.)
Let X be a closed connected ori. smooth 4 -manifold. For any nontrivial \mathbb{Z}-bundle $l \rightarrow X$ s.t. $w_{1}(\lambda)^{2}=w_{2}(X)$, where $\lambda=l \otimes \mathbb{R}$,

$$
b_{+}(X ; \lambda) \geq-\frac{\operatorname{sign}(X)}{8}
$$

where $b_{+}(X ; \lambda)=\operatorname{rank} H^{+}(X ; \lambda)$.

Applications

Recall fundamental theorems.

1. $[$ Rohlin $] X^{4}$: closed spin $\Rightarrow \operatorname{sign}(X) \equiv 0 \bmod 16$.
2. [Donaldson] Definite \Rightarrow diagonal.
3. [Furuta] The $10 / 8$-inequality

3' [Furuta-Kametani] The strong 10/8-inequality in the case when $b_{1}>0$.

Corollary 1(N.)

\exists Nonsmoothable closed indefinite spin 4-manifolds satisfying

- $\operatorname{sign}(X) \equiv 0 \bmod 16$,
- the strong $10 / 8$-inequality.

Proof

- Let M be T^{4} or $T^{2} \times S^{2} . \Rightarrow Q_{T^{4}}=3 H, Q_{T^{2} \times S^{2}}=H$.
- If $l^{\prime} \rightarrow M$ is any nontrivial \mathbb{Z}-bundle, $\Rightarrow b_{2}\left(M ; l^{\prime}\right)=0 \& w_{1}\left(l^{\prime} \otimes \mathbb{R}\right)^{2}=0$.
- Let V be a topological 4-manifold s.t. $\pi_{1} V=1, Q_{V}$ is even and definite, $\operatorname{sign}(V) \equiv 0 \bmod 16 .(\Rightarrow V$ is spin.)
- Choose a large k s.t. $X=V \# k M$ satisfies the strong 10/8-inequality.
- Let $l:=\underline{\mathbb{Z}} \# k l^{\prime} \rightarrow X . \Rightarrow Q_{X, l}=Q_{V}, w_{1}(l \otimes \mathbb{R})^{2}=0$.
- Suppose X is smooth. By Theorem 1, $Q_{X, l}=Q_{V} \sim$ diagonal. Contradiction.

Remark

Similar examples can be constructed by using Theorem 2.

Non-spin manifolds

10/8-conjecture

Every non-spin closed smooth 4-manifold X with even form satisfies

$$
b_{2}(X) \geq \frac{10}{8}|\operatorname{sign}(X)|
$$

[Bohr,'02],[Lee-Li,'00]
If the 2 -torsion part of $H_{1}(X ; \mathbb{Z})$ is $\mathbb{Z} / 2^{i}$ or $\mathbb{Z} / 2 \oplus \mathbb{Z} / 2$
\Rightarrow the $10 / 8$-conjecture is true.
Corollary 2(N.)
Nonsmoothable non-spin 4-manifolds X with even form s.t.

- the 2-torsion part of $H_{1}(X ; \mathbb{Z}) \cong \mathbb{Z} / 2$,
- the $10 / 8$-conjecture is true.

The outline of the proof of Theorem 1

- The proof of Theorem 1 is almost parallel to the SW-proof of Donaldson's theorem.
- By using Pin ${ }^{-}$(2)-monopole moduli, we will prove every characteristic element w of $Q_{X, l}$ satisfies $\left|w^{2}\right| \geq \operatorname{rank} H^{2}(X ; l) . \leftrightarrow($ The dim. of the moduli $) \leq 0$
- Then Elkies' theorem implies $Q_{X, l}$ should be standard.
- An element w in a unimodular lattice L is called characteristic if $w \cdot v \equiv v \cdot v \bmod 2$ for $\forall v \in L$.
[Elkies '95]
If every characteristic element $w \in L$ satisfies $\left|w^{2}\right| \geq \operatorname{rank} L$, then $L \cong$ diagonal.
$\mathrm{Pin}^{-}(2)$-monopole equations

$$
\operatorname{Pin}^{-}(2)=\langle\mathrm{U}(1), j\rangle=\mathrm{U}(1) \cup j \mathrm{U}(1) \subset \mathrm{Sp}(1) \subset \mathbb{H} .
$$

The two-to-one homomorphism $\mathrm{Pin}^{-}(2) \rightarrow \mathrm{O}(2)$ is defined by

$$
\begin{gathered}
z \in \mathrm{U}(1) \subset \operatorname{Pin}^{-}(2) \mapsto z^{2} \in \mathrm{U}(1) \subset \mathrm{O}(2) \\
j \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{gathered}
$$

Definition $\operatorname{Spin}^{c_{-}}(n):=\operatorname{Spin}(n) \times{ }_{\{ \pm 1\}} \operatorname{Pin}^{-}(2)$.

$$
1 \rightarrow\{ \pm 1\} \rightarrow \operatorname{Spin}^{c_{-}}(n) \rightarrow \mathrm{SO}(n) \times \mathrm{O}(2) \rightarrow 1
$$

Cf. $\operatorname{Spin}^{c}(n)=\operatorname{Spin}(n) \times{ }_{\{ \pm 1\}} \mathrm{U}(1)$.

Spin ${ }^{c_{-}-\text {structures }}$

- Let X be an oriented n-manifold.
- Fix a Riemannian metric. $\longrightarrow F(X)$: The $\mathrm{SO}(n)$-frame bundle.
- Suppose an $\mathrm{O}(2)$-bundle E over X is given.

Spin ${ }^{c^{-}-\text {-structure }}$
A Spin ${ }^{c_{-}-\text {structure on }}(X, E)$ is given by (P, τ) s.t.

- P : a $\operatorname{Spin}^{c-}(n)$-bundle over X,
- $\tau: P /\{ \pm 1\} \stackrel{\cong}{\rightrightarrows} F(X) \times_{X} E$.

Proposition(Furuta '08)

$\exists \operatorname{Spin}^{c_{-}-\text {structure on }}(X, E) \Leftrightarrow w_{2}(X)=w_{2}(E)+w_{1}(E)^{2}$.

The case when $n=4$

- $\operatorname{Spin}(4)=\operatorname{Sp}(1) \times \operatorname{Sp}(1)$.
- $\operatorname{Spin}^{c_{-}}(4)=\left(\operatorname{Sp}(1) \times \operatorname{Sp}(1) \times \operatorname{Pin}^{-}(2)\right) /\{ \pm 1\} \ni\left[q_{+}, q_{-}, u\right]$.

Spin ${ }^{c_{-}}(4)$-modules $\mathbb{H}_{T}, \mathbb{H}_{+}$and \mathbb{H}_{-}
$-\mathbb{H}_{T}, \mathbb{H}_{+}, \mathbb{H}_{-} \cong \mathbb{H}$ as vector spaces.

- The actions of $\left[q_{+}, q_{-}, u\right] \in \operatorname{Spin}^{c_{-}}$(4) are given by

$$
\begin{aligned}
\mathbb{H}_{T} \ni v \mapsto q_{+} v q_{-}^{-1} & \longrightarrow P \times_{\operatorname{Spin}^{c}-(4)} \mathbb{H}_{T} \cong T X \\
\mathbb{H}_{ \pm} \ni \phi \mapsto q_{ \pm} \phi u^{-1} & \longrightarrow P \times_{\operatorname{Spin}^{c-}-(4)} \mathbb{H}_{ \pm}=: S^{ \pm}
\end{aligned}
$$

$S^{ \pm}$are the positive/negative spinor bundles.

Spin ${ }^{c}-$-structures
Pin ${ }^{-}$(2)-monopole equations

The Clifford multiplication Define the $\operatorname{Spin}^{c_{-}}$(4)-equivariant map

$$
\begin{aligned}
& \rho_{0}: \mathbb{H}_{T} \times \mathbb{H}_{+} \rightarrow \mathbb{H}_{-},(v, \phi) \mapsto \bar{v} \phi . \\
& \longrightarrow \rho: \Omega^{1}(X) \times \Gamma\left(S^{+}\right) \rightarrow \Gamma\left(S^{-}\right) .
\end{aligned}
$$

Twisted complex version

- $\operatorname{Spin}^{c-}(4)=\operatorname{Spin}(n) \times_{\{ \pm 1\}} \operatorname{Pin}^{-}(2)$ has two components.
- Let $G_{0} \subset \operatorname{Spin}^{c_{-}}(4)$ be the identity component.
- Let $\varepsilon: \operatorname{Spin}^{c_{-}}(4) \rightarrow \operatorname{Spin}^{c_{-}}(4) / G_{0} \cong\{ \pm 1\}$ be the projection. $\longrightarrow P \times{ }_{\varepsilon} \mathbb{R}=\operatorname{det} E=: \lambda$
- Let Spin ${ }^{c_{-}}(4)$ act on \mathbb{C} by complex conjugation via ε.
- Define the Spin $^{c-}$ (4)-equivariant map,

$$
\begin{aligned}
& \rho_{0}: \mathbb{H}_{T} \otimes_{\mathbb{R}} \mathbb{C} \times \mathbb{H}_{+} \rightarrow \mathbb{H}_{-},(v \otimes a, \phi) \mapsto \bar{v} \phi \bar{a} \\
& \longrightarrow \rho: \Omega^{1}(\mathbb{R} \oplus i \lambda) \times \Gamma\left(S^{+}\right) \rightarrow \Gamma\left(S^{-}\right)
\end{aligned}
$$

Dirac operator

An $\mathrm{O}(2)$-connection A on $E+$ Levi-Civita connection
$\rightarrow \mathrm{A} \operatorname{Spin}^{c_{-}}$(4)-connection \mathbb{A} on P
\rightarrow Dirac operator

$$
D_{A}: \Gamma\left(S^{+}\right) \rightarrow \Gamma\left(S^{-}\right)
$$

If A^{\prime} is another $\mathrm{O}(2)$-connection $\Rightarrow a=A-A^{\prime} \in \Omega^{1}(i \lambda)$.

$$
D_{A+a} \phi=D_{A} \phi+\rho(a) \phi
$$

Quadratic map

Let $x=\left[q_{+}, q_{-}, u\right] \in \operatorname{Spin}^{c_{-}}(4)$ act on im \mathbb{H} by

$$
\operatorname{im} \mathbb{H} \ni v \mapsto \varepsilon(x) q_{+} v q_{+}^{-1} \quad \longrightarrow \Gamma\left(P \times_{\operatorname{Spin}^{c}-(4)} \text { im } \mathbb{H}\right) \cong \Omega^{+}(i \lambda) .
$$

Then $\phi \in \mathbb{H}_{+} \mapsto \phi i \bar{\phi} \in \operatorname{im} \mathbb{H}$ is $\operatorname{Spin}^{c_{-}}(4)$-equivariant. We obtain

$$
q: \Gamma\left(S^{+}\right) \rightarrow \Omega^{+}(i \lambda)
$$

$\operatorname{Pin}^{-}(2)$-monopole equations
Let \mathcal{A} be the space of $\mathrm{O}(2)$-connections on E.
For $(A, \phi) \in \mathcal{A} \times \Gamma\left(S^{+}\right)$, Pin $^{-}(2)$-monopole equations are defined by

$$
\left\{\begin{aligned}
D_{A} \phi & =0 \\
F_{A}^{+} & =q(\phi)
\end{aligned}\right.
$$

Relation to Seiberg-Witten theory

- $\operatorname{Spin}^{c-}(4)=\operatorname{Spin}(4) \times_{\{ \pm 1\}} \operatorname{Pin}^{-}(2)$ has two component.
- The identity compo. $G_{0}=\operatorname{Spin}(4) \times_{\{ \pm 1\}} \mathrm{U}(1)=\operatorname{Spin}^{c}(4)$.
- $\operatorname{Spin}^{c_{-}}(4) / G_{0}=\mathbb{Z} / 2$.
- Let (P, τ) be a Spin $^{c-}$-structure on (X, E).
- $\tilde{X}=P / G_{0} \rightarrow X$ is a double covering s.t.

$$
\lambda:=\tilde{X} \times_{\{ \pm 1\}} \mathbb{R} \cong \operatorname{det} E
$$

- $P \rightarrow \tilde{X}$ is a $G_{0}=\operatorname{Spin}^{c}(4)$-bundle.

$$
\begin{aligned}
& P=P \curvearrowleft J \\
& \downarrow \operatorname{Spin}^{c-(4)} \quad \|_{0}=\operatorname{Spin}^{c}(4) \\
& X \longleftarrow \frac{2: 1}{\longleftarrow} P / G_{0}=\tilde{X} \curvearrowleft \iota
\end{aligned}
$$

- $\iota: \tilde{X} \rightarrow \tilde{X}$, the covering transformation.
- $J=[1,1, j] \in\left(\operatorname{Sp}(1) \times \operatorname{Sp}(1) \times \operatorname{Pin}^{-}(2)\right) /\{ \pm 1\}=\operatorname{Spin}^{c_{-}}(4)$
- The Spin^{c}-structure c on \tilde{X} is induced from $P \rightarrow \tilde{X}$.
- The J-action induces antilinear involutions I on the spinor bundles and the determinant line bundle of c.

$$
\operatorname{Pin}^{-}(2) \text {-monopole theory on } X=I \text {-invariant SW theory on } \tilde{X} .
$$

Gauge transformation group

$\mathcal{G}:=\left\{\operatorname{Spin}^{c_{-}}(4)\right.$-equiv. diffeos of P covering the id. of $\left.P / \operatorname{Pin}^{-}(2)\right\}$ $\cong \Gamma\left(P \times{ }_{\text {ad }} \operatorname{Pin}^{-}(2)\right)$,
where "ad" is the adjoint action on $\mathrm{Pin}^{-}(2)$ by $\mathrm{Pin}^{-}(2)$-compo. of $\operatorname{Spin}^{c_{-}}(4)=\operatorname{Spin}(4) \times_{\{ \pm 1\}} \operatorname{Pin}^{-}(2)$.
$g \in \mathcal{G}$ acts on $(A, \phi) \in \mathcal{A} \times \Gamma\left(S^{+}\right)$by $g(A, \phi)=\left(A-2 g^{-1} d g, g \phi\right)$.
Cf. In the SW -case, $\mathcal{G}_{S W}=\operatorname{Map}\left(X, S^{1}\right)$.

The moduli space $\mathcal{M}=\{$ solutions $\} / \mathcal{G}$.

What is $\mathcal{G}=\Gamma\left(P \times_{\text {ad }} \operatorname{Pin}^{-}(2)\right)$?

- $\operatorname{Pin}^{-}(2)=\mathrm{U}(1) \cup j \mathrm{U}(1)$.

$$
\text { For } \begin{aligned}
& u, z \in \mathrm{U}(1), \quad \begin{aligned}
\operatorname{ad}_{z}(u) & =z u \bar{z}=u \\
\operatorname{ad}_{j z}(u) & =j z u \bar{z}(-j)=\bar{u}, \\
\operatorname{ad}_{z}(j u) & =z^{2} j u \\
\operatorname{ad}_{j z}(j u) & =\bar{z}^{2} j \bar{u} . \\
\Rightarrow \mathcal{G}=\mathcal{G}_{0} \cup \mathcal{G}_{1}, \quad & \mathcal{G}_{0}
\end{aligned}=\Gamma\left(P \times_{\mathrm{ad}} \mathrm{U}(1)\right), \\
& \mathcal{G}_{1}=\Gamma(P \times \mathrm{ad} j \mathrm{U}(1)) .
\end{aligned}
$$

- Note $\mathcal{G}_{0} \cong \Gamma\left(\tilde{X} \times_{\{ \pm 1\}} \mathrm{U}(1)\right)$, where $\{ \pm 1\}$ acts on $\mathrm{U}(1)$ by complex conjugation.

Define the involution I on $\mathcal{G}_{S W}=\operatorname{Map}\left(\tilde{X} ; S^{1}\right)$ by $I g=\overline{\iota^{*} g}$, where
$\iota: \tilde{X} \rightarrow \tilde{X}$ the covering transformation. $\Rightarrow \mathcal{G}_{0}=\left(\mathcal{G}_{S W}\right)^{I}$.

Proposition $\mathcal{G}_{1}=\Gamma\left(P \times_{\text {ad }} j \mathrm{U}(1)\right) \neq \emptyset \Leftrightarrow \tilde{c}_{1}(E)=0$.

- $\tilde{c}_{1}(E)$ is the Euler class considered in $H^{2}(X ; l)$, where l is the sub-Z్Z-bundle of $\lambda=\operatorname{det} E$.
Froyshov calls $\tilde{c}_{1}(E)$ the twisted 1st Chern class.
- The iso. classes of $\mathrm{O}(2)$-bundle E over X s.t. $\operatorname{det} E \cong \lambda$ are classified by $\tilde{c}_{1}(E) \in H^{2}(X ; l) . \leftarrow$ Proved by Froyshov.
- $\tilde{c}_{1}(E)=0 \Leftrightarrow E \cong \underline{\mathbb{R}} \oplus \lambda$.
- Since $\operatorname{ad}_{z}(j u)=z^{2} j u$ \& $\operatorname{ad}_{j z}(j u)=\bar{z}^{2} j \bar{u}$,

$$
P \times \text { ad } j \mathrm{U}(1) \cong S(E): \text { The bundle of unit vectors of } E \text {. }
$$

The moduli space

$$
\begin{aligned}
\mathcal{M} & =\{\text { solutions }\} / \mathcal{G} \\
\mathcal{M}_{0} & =\{\text { solutions }\} / \mathcal{G}_{0}
\end{aligned}
$$

Note $\tilde{c}_{1}(E) \neq 0 \Rightarrow \mathcal{G}=\mathcal{G}_{0} \Rightarrow \mathcal{M}=\mathcal{M}_{0}$.

Proposition

- \mathcal{M} is compact.
- The virtual dimension of \mathcal{M} :

$$
d=\frac{1}{4}\left(\tilde{c}_{1}(E)^{2}-\operatorname{sign}(X)\right)-\left(b_{0}(X ; l)-b_{1}(X ; l)+b_{+}(X ; l)\right) .
$$

If l is nontrivial \& X connected $\Rightarrow b_{0}(X ; l)=0$.

Reducibles

- Recall $g(A, \phi)=\left(A-2 g^{-1} d g, g \phi\right)$.
- If $\phi \neq 0 \Rightarrow \mathcal{G}$-action is free.
- The stabilizer of $(A, 0)$ is $\{ \pm 1\} \subset \mathcal{G}_{0} \cong \Gamma\left(\tilde{X} \times_{\{ \pm 1\}} \mathrm{U}(1)\right)$, unless $E=\underline{\mathbb{R}} \oplus \lambda$ and A is flat (\Rightarrow The stabilizer $\cong \mathbb{Z} / 4$).
- The elements of the form $(A, 0)$ are called reducibles.

Cf. In the SW-case, the stabilizer of $(A, 0)$ is $S^{1} \subset \operatorname{Map}\left(X, S^{1}\right)$.

- In general, $\{$ reducible solutions $\} / \mathcal{G}_{0} \cong T^{b_{1}(X ; l)} \subset \mathcal{M}_{0}$.

Proof of Theorem 1

Theorem 1.(N.)

- X : a closed connected ori. smooth 4-manifold.
- $l \rightarrow X$: a nontrivial \mathbb{Z}-bdl. s.t. $w_{1}(\lambda)^{2}=0$, where $\lambda=l \otimes \mathbb{R}$.

$$
\text { If } Q_{X, l} \text { is definite } \Rightarrow Q_{X, l} \sim \text { diagonal. }
$$

Outline of the proof

- We will prove every characteristic element w of $Q_{X, l}$ satisfies

$$
\left|w^{2}\right| \geq \operatorname{rank} H^{2}(X ; l)
$$

by proving for every E,

$$
d=\operatorname{dim} \mathcal{M}_{0} \leq 0
$$

- Then Elkies' theorem implies $Q_{X, l}$ should be standard.

The structure of \mathcal{M}_{0} when $b_{+}(X ; l)=0$

- Suppose a $\operatorname{Spin}^{c-}{ }^{- \text {-structure }}(P, \tau)$ on X is given.
- For simplicity, assume $b_{1}(X, l)=0$.
$\Rightarrow \exists^{1}$ reducible class $\rho_{0} \in \mathcal{M}_{0}$.
- Perturb the $\mathrm{Pin}^{-}(2)$-monopole equations by adding $\eta \in \Omega^{+}(i \lambda)$ to the curvature equation. $\rightarrow F_{A}^{+}=q(\phi)+\eta$.
- For generic $\eta, \mathcal{M}_{0} \backslash\left\{\rho_{0}\right\}$ is a d-dimensional manifold.
- Fix a small neighborhood $N\left(\rho_{0}\right)$ of $\left\{\rho_{0}\right\}$.
$\Rightarrow N\left(\rho_{0}\right) \cong \mathbb{R}^{d} /\{ \pm 1\}=$ a cone of $\mathbb{R P}^{d-1}$
Then $\overline{\mathcal{M}_{0}}:=\overline{\mathcal{M}_{0} \backslash N\left(\rho_{0}\right)}$ is a compact d-manifold \& $\partial \overline{\mathcal{M}_{0}}=\mathbb{R P}^{d-1}$.

- Let $\mathcal{B}^{*}=\left(\mathcal{A} \times\left(\Gamma\left(S^{+}\right) \backslash\{0\}\right)\right) / \mathcal{G}_{0}$.

Proposition $\mathcal{B}^{*} \underset{\text { h.e. }}{\simeq} \mathbb{R P}^{\infty} \times T^{b_{1}(X ; l)}$.
Cf. In the SW-case, $\mathcal{B}_{S W}^{*} \underset{\text { h.e. }}{\simeq} \mathbb{C P}^{\infty} \times T^{b_{1}(X)} . \mathcal{B}^{*} \cong\left(\mathcal{B}_{S W}^{*}\right)^{I}$.
Lemma
If $b_{+}(X ; l)=0 \& b_{1}(X ; l)=0 \Rightarrow d=\operatorname{dim} \mathcal{M}_{0} \leq 0$.

Proof

- Suppose $d>0$.
- Recall $\overline{\mathcal{M}_{0}}$ is a compact d-manifold s.t. $\partial \overline{\mathcal{M}_{0}}=\mathbb{R P}^{d-1}$.
- $\exists C \in H^{d-1}\left(\mathcal{B}^{*} ; \mathbb{Z} / 2\right) \cong H^{d-1}\left(\mathbb{R} \mathrm{P}^{\infty} ; \mathbb{Z} / 2\right)$ s.t. $\left\langle C,\left[\partial \overline{\mathcal{M}_{0}}\right]\right\rangle \neq 0 . \Rightarrow$ Contradiction.
- Note $\operatorname{sign}(X)=b_{+}(X ; l)-b_{-}(X ; l)$ for any \mathbb{Z}-bundle l.
- By Lemma, if l is nontrivial \& $b_{+}(X ; l)=0 \& b_{1}(X ; l)=0$,

$$
\begin{aligned}
d & =\frac{1}{4}\left(\tilde{c}_{1}(E)^{2}-\operatorname{sign}(X)\right)-\left(b_{0}(X ; l)-b_{1}(X ; l)+b_{+}(X ; l)\right) \\
& =\frac{1}{4}\left(\tilde{c}_{1}(E)^{2}+b_{2}(X ; l)\right) \leq 0 .
\end{aligned}
$$

Note $\tilde{c}_{1}(E)^{2} \leq 0$ if $b_{+}(X ; l)=0$.

- Therefore, for any E which admits a Spin $^{c-}{ }^{-}$-structure,

$$
b_{2}(X ; l) \leq\left|\tilde{c}_{1}(E)^{2}\right| .
$$

By varying E, we can prove every characteristic element w satisfies

$$
b_{2}(X ; l) \leq\left|w^{2}\right| .
$$

Recall

- E admits a Spin ${ }^{c-}$-structure

$$
\Leftrightarrow w_{2}(X)=w_{2}(E)+w_{1}(E)^{2}=w_{2}(E)+w_{1}(\lambda)^{2},
$$

where $\lambda=\operatorname{det} E=l \otimes \mathbb{R}$.

- $\tilde{c}_{1}(E) \in H^{2}(X ; l)$ classifies E s.t. $\operatorname{det} E=l \otimes \mathbb{R}$.

Note that $0 \rightarrow l \xrightarrow{\cdot 2} l \rightarrow \mathbb{Z} / 2 \rightarrow 0$ induces the mod-2-reduction $\operatorname{map}[\cdot]_{2}: H^{2}(X ; l) \rightarrow H^{2}(X ; \mathbb{Z} / 2) \&\left[\tilde{c}_{1}(E)\right]_{2}=w_{2}(E)$. We have,

Theorem

Suppose $w_{1}(\lambda)^{2}=0$. For every $C \in H^{2}(X ; l)$ s.t.
$w_{2}(X)=[C]_{2}+w_{1}(\lambda)^{2}=[C]_{2}$,

$$
\left|C^{2}\right| \geq b_{2}(X ; l)
$$

Lemma

For every characteristic element c of $Q_{X, l}, \exists$ a torsion $\delta \in H^{2}(X ; l)$ s.t. $[c+\delta]_{2}=w_{2}(X)$.

Then, for \forall characteristic element c of $Q_{X, l}$

$$
\left|c^{2}\right|=\left|(c+\delta)^{2}\right| \geq b_{2}(X ; l)
$$

By Elkies' theorem, $Q_{X, l} \sim$ diagonal.

The outline of the proof of Theorem 2

- Suppose $w_{1}(\lambda)^{2}=w_{2}(X)$. Let $E=\underline{\mathbb{R}} \oplus \lambda$.
$\Rightarrow \exists \operatorname{Spin}^{c_{-}-\text {-structure on }(X, E) .} \Rightarrow \mathcal{G}_{1} \neq \emptyset$.
- For simplicity, assume $b_{1}(X ; l)=0$.
- Then, by taking finite dimensional approximation of the monopole map, we obtain a proper \mathbb{Z}_{4}-equivariant map

$$
f: \tilde{\mathbb{R}}^{m} \oplus \mathbb{C}_{1}^{n+k} \rightarrow \tilde{\mathbb{R}}^{m+b} \oplus \mathbb{C}_{1}^{n}
$$

where

- $\tilde{\mathbb{R}}$ is \mathbb{R} on which \mathbb{Z}_{4} acts via $\mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2}=\{ \pm 1\} \curvearrowright \mathbb{R}$,
- \mathbb{C}_{1} is \mathbb{C} on which \mathbb{Z}_{4} acts by multiplication of i,
- $k=-\operatorname{sign}(X) / 8, b=b_{+}(X ; \lambda), m, n$ are some integers.

Here, \mathbb{Z}_{4} is generated by the constant section

$$
j \in \mathcal{G}_{1}=\Gamma\left(\tilde{X} \times_{\{ \pm 1\}} j \mathrm{U}(1)\right) .
$$

- By using the techniques of equivariant homotopy theory, e.g., tom Dieck's character formula, we can see that any proper \mathbb{Z}_{4}-map of the form,

$$
f: \tilde{\mathbb{R}}^{m} \oplus \mathbb{C}_{1}^{n+k} \rightarrow \tilde{\mathbb{R}}^{m+b} \oplus \mathbb{C}_{1}^{n}
$$

should satisfy $b \geq k$.

- That is,

$$
b_{+}(X ; \lambda) \geq-\frac{1}{8} \operatorname{sign}(X) .
$$

Finite dimensional approximation

- Take a flat connection A_{0} on $\underline{\mathbb{R}} \oplus \lambda$.
$\mathrm{Pin}^{-}(2)$-monopole map

$$
\begin{gathered}
\mu: \Omega^{1}(i \lambda) \oplus \Gamma\left(S^{+}\right) \rightarrow\left(\Omega^{0} \oplus \Omega^{+}\right)(i \lambda) \oplus \Gamma\left(S^{-}\right)=: \mathcal{W} \\
(a, \phi) \mapsto\left(d^{*} a, F_{A_{0}}+d^{+} a+q(\phi), D_{A_{0}+a} \phi\right) .
\end{gathered}
$$

- Let $l(a, \phi):=\left(d^{*} a, d^{+} a, D_{A_{0}} \phi\right)$ be the linear part of μ. $\rightarrow l$ is Fredholm.
- $c=\mu-l$: quadratic, compact.
- Choose a finite dim. subspace $U \subset \mathcal{W}$ s.t. $\operatorname{dim} U \gg 1$,

$$
U \supset(\operatorname{im} l)^{\perp}
$$

- Let $V:=l^{-1}(U) \& p: \mathcal{W} \rightarrow U$ be the L^{2}-projection.
- Define $f: V \rightarrow U$ by $f=l+p c$. $\rightarrow f$: proper, \mathbb{Z}_{4}-equiv.

Remarks for future researches

- $\mathrm{Pin}^{-}(2)$-monopole invariants
- Calculation, gluing formula, stable cohomotopy refinements
- Orbifolds with surface singularities
- Exotic involutions Cf. [Fintushel-Stern-Snukujian]
- Smooth inequivalent but topologically equivalent embedded surfaces Cf. [H.J.Kim-Ruberman]
- When \tilde{X} : symplectic \& $I^{*} \omega=-\omega$, $\operatorname{Pin}^{-}(2)$-monopole inv. $\underset{? ?}{=}$ real Gromov-Witten inv.
Cf. [Tian-Wang]
- Pin $^{-}(2)$-monopole Floer theory?
$\mathrm{Pin}^{-}(2)$ Heegaard Floer theory?
- "Witten conjecture" for $\mathrm{Pin}^{-}(2)$-monopole invariants?
- [Feehan-Leness] SW = Donaldson
$\mathrm{Pin}^{-}(2)$-monopole inv. $=$???

