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◮ Let X be a closed oriented 4-manifold.

Topological invariants for X

◮ π1X, cohomology ring, k-invariants...

Intersection form

QX : H2(X; Z)/torsion ×H2(X; Z)/torsion → Z,

(a, b) 7→ 〈a ∪ b, [X]〉.

◮ QX is a symmetric bilinear unimodular form.

[J.H.C.Whitehead ’49]

If π1X = 1, the homotopy type of X is determined by the
isomorphism class of QX .

Nobuhiro Nakamura Pin−(2)-monopole equations and intersection forms

Introduction
Applications

Pin−(2)-monopole equations
Proof of Theorem 1 & 2

Froyshov’s results
Main results

In 4-dim. TOP

π1X = 1

[Freedman ’82]

The homeo type of X is determined by

◮ the iso. class of QX if QX is even,

◮ the iso. class of QX & ks(X) if QX is odd.

π1X 6= 1

If π1X is “Good” ⇒ Freedman theory + Surgery theory.
→ Difficult.
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In 4-dim. DIFF

◮ Let X be a closed oriented smooth 4-manifold.

[Rohlin] If X is spin ⇒ sign(X) ≡ 0 mod 16.

[Donaldson] If QX is definite ⇒ QX ∼ The diagonal form.

[Furuta] If X is spin & QX is indefinite, then

b2(X) ≥
10

8
| sign(X)| + 2.
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Refinements, variants

[Furuta-Kametani ’05]

The strong 10/8-inequality in the case when b1(X) > 0.

[Froyshov ’10]

A local coefficient analogue of Donaldson’s theorem.

local coefficients ↔ double coverings ↔ H1(X; Z/2)
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Froyshov’s results
4-manifolds and intersection forms with local coefficients, arXiv:1004.0077

◮ Suppose a double covering X̃ → X is given.

◮ l := X̃ ×Z2 Z, a Z-bundle over X.
−→ H∗(X; l): l-coefficient cohomology.

◮ Note l ⊗ l = Z. The cup product

∪ : H2(X; l) ×H2(X; l)→ H4(X; Z) ∼= Z,

induces the intersection form with local coefficient

QX,l : H2(X; l)/torsion ×H2(X; l)/torsion → Z.

◮ QX,l is also a symmetric bilinear unimodular form.
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A special case of Froyshov’s theorem

◮ X: a closed connected oriented smooth 4-manifold s.t.

b+(X) + dimZ/2(torH1(X; Z)⊗ Z/2) ≤ 2. (1)

◮ l→ X: a nontrivial Z-bundle.

If QX,l is definite ⇒ QX,l ∼ diagonal.

◮ The original form of Froyshov’s theorem is:

If X with ∂X = Y : ZHS3 satisfies (1)
& QX,l is nonstandard definite

⇒ δ0 : HF 4(Y ; Z/2)→ Z/2 is non-zero.

◮ Y = S3 ⇒ HF 4(Y ; Z/2) = 0 ⇒The above result.
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◮ The proof uses the moduli space of SO(3)-instantons on a

SO(3)-bundle V .

◮ Twisted reducibles (stabilizer ∼= Z/2) play an important role.
V is reduced to λ⊕ E, where E is an O(2)-bundle,

λ = detE: nontrivial.

Cf [Fintushel-Stern’84] gives an alternative proof of Donaldson’s
theorem by using SO(3)-instantons.
−→ Abelian reducibles (stabilizer ∼= U(1))
V is reduced to R⊕ L, where L is a U(1)-bundle.

- Donaldson’s theorem is proved by Seiberg-Witten theory, too.

Question
Can we prove Froyshov’s result by Seiberg-Witten theory?

−→ Our result would be an answer.
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Main results

Theorem 1.(N.)

◮ X: a closed connected ori. smooth 4-manifold.

◮ l→ X: a nontrivial Z-bdl. s.t. w1(λ)2 = 0, where λ = l ⊗ R.

If QX,l is definite ⇒ QX,l ∼ diagonal.

Cf. Froyshov’s theorem

◮ X: — s.t. b+(X) + dimZ/2(torH1(X; Z)⊗ Z/2) ≤ 2.

◮ l→ X: a nontrivial Z-bundle.

If QX,l is definite ⇒ QX,l ∼ diagonal.
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Main results

Theorem 1.(N.)

◮ X: a closed connected ori. smooth 4-manifold.

◮ l→ X: a nontrivial Z-bdl. s.t. w1(λ)2 = 0, where λ = l ⊗ R.

If QX,l is definite ⇒ QX,l ∼ diagonal.

◮ For the proof, we will introduce a variant of Seiberg-Witten
equations
−→ Pin−(2)-monopole equations on Spinc

−-structures on X.

◮ Spinc
−-structure is a Pin−(2)-variant of Spinc-str. defined by

M.Furuta, whose complex structure is “twisted along l”.
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◮ The moduli space of Pin−(2)-monopoles is compact.
−→ Bauer-Furuta theory can be developed.

Furuta’s theorem
Let X be a closed ori. smooth spin 4-manifold with indefinite QX .

b+(X) ≥ −
sign(X)

8
+ 1.

Theorem 2(N.)

Let X be a closed connected ori. smooth 4-manifold. For any
nontrivial Z-bundle l→ X s.t. w1(λ)2 = w2(X), where λ = l ⊗R,

b+(X;λ) ≥ −
sign(X)

8
,

where b+(X;λ) = rankH+(X;λ).
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Recall fundamental theorems.

1. [Rohlin] X4: closed spin ⇒ sign(X) ≡ 0 mod 16.

2. [Donaldson] Definite ⇒ diagonal.

3. [Furuta] The 10/8-inequality

3’ [Furuta-Kametani] The strong 10/8-inequality in the case
when b1 > 0.

Corollary 1(N.)

∃ Nonsmoothable closed indefinite spin 4-manifolds satisfying

◮ sign(X) ≡ 0 mod 16,

◮ the strong 10/8-inequality.
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Proof

◮ Let M be T 4 or T 2 × S2. ⇒ QT 4 = 3H , QT 2×S2 = H .

◮ If l′ →M is any nontrivial Z-bundle,
⇒ b2(M ; l′) = 0 & w1(l

′ ⊗ R)2 = 0.

◮ Let V be a topological 4-manifold s.t. π1V = 1, QV is even
and definite, sign(V ) ≡ 0 mod 16. (⇒ V is spin.)

◮ Choose a large k s.t. X = V #kM satisfies the strong
10/8-inequality.

◮ Let l := Z#kl′ → X. ⇒ QX,l = QV , w1(l ⊗ R)2 = 0.

◮ Suppose X is smooth. By Theorem 1,
QX,l = QV ∼ diagonal. Contradiction.

Remark
Similar examples can be constructed by using Theorem 2.
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10/8-conjecture

Every non-spin closed smooth 4-manifold X with even form
satisfies

b2(X) ≥
10

8
| sign(X)|.

[Bohr,’02],[Lee-Li,’00]

If the 2-torsion part of H1(X; Z) is Z/2i or Z/2⊕ Z/2
⇒ the 10/8-conjecture is true.

Corollary 2(N.)

∃ Nonsmoothable non-spin 4-manifolds X with even form s.t.

◮ the 2-torsion part of H1(X; Z) ∼= Z/2,

◮ the 10/8-conjecture is true.
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The outline of the proof of Theorem 1

◮ The proof of Theorem 1 is almost parallel to the SW-proof of
Donaldson’s theorem.

◮ By using Pin−(2)-monopole moduli, we will prove every
characteristic element w of QX,l satisfies
|w2| ≥ rankH2(X; l). ↔ (The dim. of the moduli) ≤ 0

◮ Then Elkies’ theorem implies QX,l should be standard.

- An element w in a unimodular lattice L is called characteristic

if w · v ≡ v · v mod 2 for ∀v ∈ L.

[Elkies ’95]

If every characteristic element w ∈ L satisfies |w2| ≥ rankL, then
L ∼= diagonal.
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Pin−(2)-monopole equations

Pin−(2) = 〈U(1), j〉 = U(1) ∪ j U(1) ⊂ Sp(1) ⊂ H.

The two-to-one homomorphism Pin−(2)→ O(2) is defined by

z ∈ U(1) ⊂ Pin−(2) 7→ z2 ∈ U(1) ⊂ O(2),

j 7→

(

1 0
0 −1

)

.

Definition Spinc
−(n) := Spin(n)×{±1} Pin−(2).

1→ {±1} → Spinc
−(n)→ SO(n)×O(2)→ 1.

Cf. Spinc(n) = Spin(n)×{±1} U(1).
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Spinc−-structures

◮ Let X be an oriented n-manifold.

◮ Fix a Riemannian metric.
−→ F (X): The SO(n)-frame bundle.

◮ Suppose an O(2)-bundle E over X is given.

Spinc
−-structure

A Spinc
−-structure on (X,E) is given by (P, τ) s.t.

◮ P : a Spinc
−(n)-bundle over X,

◮ τ : P/{±1}
∼=
→ F (X)×X E.

Proposition(Furuta ’08)

∃ Spinc
−-structure on (X,E) ⇔ w2(X) = w2(E) + w1(E)2.
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The case when n = 4

◮ Spin(4) = Sp(1) × Sp(1).

◮ Spinc
−(4) = (Sp(1) × Sp(1)× Pin−(2))/{±1} ∋ [q+, q−, u].

Spinc
−(4)-modules HT , H+ and H−

◮ HT , H+, H−
∼= H as vector spaces.

◮ The actions of [q+, q−, u] ∈ Spinc
−(4) are given by

HT ∋ v 7→ q+vq−1
− −→ P ×Spinc

− (4) HT
∼= TX

H± ∋ φ 7→ q±φu−1 −→ P ×Spinc
− (4) H± =: S±

S± are the positive/negative spinor bundles.
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The Clifford multiplication Define the Spinc
−(4)-equivariant map

ρ0 : HT ×H+ → H−, (v, φ) 7→ v̄φ.

−→ ρ : Ω1(X)× Γ(S+)→ Γ(S−).

Twisted complex version

◮ Spinc
−(4) = Spin(n)×{±1} Pin−(2) has two components.

◮ Let G0 ⊂ Spinc
−(4) be the identity component.

◮ Let ε : Spinc
−(4)→ Spinc

−(4)/G0
∼= {±1} be the projection.

−→ P ×ε R = detE =: λ

◮ Let Spinc
−(4) act on C by complex conjugation via ε.

◮ Define the Spinc
−(4)-equivariant map,

ρ0 : HT ⊗R C×H+ → H−, (v ⊗ a, φ) 7→ v̄φā.

−→ ρ : Ω1(R⊕ iλ)× Γ(S+)→ Γ(S−).
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Dirac operator

An O(2)-connection A on E + Levi-Civita connection
→ A Spinc

−(4)-connection A on P
→ Dirac operator

DA : Γ(S+)→ Γ(S−).

If A′ is another O(2)-connection ⇒ a = A−A′ ∈ Ω1(iλ).

DA+aφ = DAφ + ρ(a)φ.
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Quadratic map

Let x = [q+, q−, u] ∈ Spinc
−(4) act on im H by

im H ∋ v 7→ ε(x)q+vq−1
+ −→ Γ(P ×Spinc

−(4) im H) ∼= Ω+(iλ).

Then φ ∈ H+ 7→ φiφ̄ ∈ im H is Spinc
−(4)-equivariant. We obtain

q : Γ(S+)→ Ω+(iλ).

Pin−(2)-monopole equations

Let A be the space of O(2)-connections on E.
For (A,φ) ∈ A× Γ(S+), Pin−(2)-monopole equations are defined
by

{

DAφ = 0,

F+
A = q(φ).
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Relation to Seiberg-Witten theory

◮ Spinc
−(4) = Spin(4)×{±1} Pin−(2) has two component.

◮ The identity compo. G0 = Spin(4) ×{±1} U(1) = Spinc(4).

◮ Spinc
−(4)/G0 = Z/2.

◮ Let (P, τ) be a Spinc
−-structure on (X,E).

◮ X̃ = P/G0 → X is a double covering s.t.

λ := X̃ ×{±1} R ∼= detE.

◮ P → X̃ is a G0 = Spinc(4)-bundle.
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P P x J




y

Spinc
−(4)





y

G0=Spinc(4)

X ←−−−−
2:1

P/G0 = X̃ x ι

◮ ι : X̃ → X̃, the covering transformation.

◮ J = [1, 1, j] ∈ (Sp(1)× Sp(1)× Pin−(2))/{±1} = Spinc
−(4)

◮ The Spinc-structure c on X̃ is induced from P → X̃.

◮ The J-action induces antilinear involutions I on the spinor
bundles and the determinant line bundle of c.

Pin−(2)-monopole theory on X = I-invariant SW theory on X̃ .
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Gauge transformation group

G :={Spinc
−(4)-equiv. diffeos of P covering the id. of P/ Pin−(2)}

∼=Γ(P ×ad Pin−(2)),

where “ad” is the adjoint action on Pin−(2) by Pin−(2)-compo.
of Spinc

−(4) = Spin(4) ×{±1} Pin−(2).

g ∈ G acts on (A,φ) ∈ A× Γ(S+) by g(A,φ) = (A− 2g−1dg, gφ).

Cf. In the SW-case, GSW = Map(X, S1).

The moduli space M = { solutions }/G.
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What is G = Γ(P ×ad Pin−(2))?

◮ Pin−(2) = U(1) ∪ j U(1).

For u, z ∈ U(1), adz(u) = zuz̄ = u,

adjz(u) = jzuz̄(−j) = ū,

adz(ju) = z2ju,

adjz(ju) = z̄2jū.

⇒ G = G0 ∪ G1, G0 = Γ(P ×ad U(1)),

G1 = Γ(P ×ad j U(1)).

◮ Note G0
∼= Γ(X̃ ×{±1} U(1)), where {±1} acts on U(1) by

complex conjugation.

Define the involution I on GSW = Map(X̃; S1) by Ig = ι∗g, where

ι : X̃ → X̃ the covering transformation. ⇒ G0 = (GSW )I .
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Proposition G1 = Γ(P ×ad j U(1)) 6= ∅ ⇔ c̃1(E) = 0.

◮ c̃1(E) is the Euler class considered in H2(X; l), where l is the
sub-Z-bundle of λ = det E.
Froyshov calls c̃1(E) the twisted 1st Chern class.

◮ The iso. classes of O(2)-bundle E over X s.t. det E ∼= λ are
classified by c̃1(E) ∈ H2(X; l). ← Proved by Froyshov.

◮ c̃1(E) = 0 ⇔ E ∼= R⊕ λ.

◮ Since adz(ju) = z2ju & adjz(ju) = z̄2jū,

P ×ad j U(1) ∼= S(E) : The bundle of unit vectors of E.

Nobuhiro Nakamura Pin−(2)-monopole equations and intersection forms

Introduction
Applications

Pin−(2)-monopole equations
Proof of Theorem 1 & 2

Spin
c
− -structures

Pin−(2)-monopole equations

The moduli space

M = { solutions }/G,

M0 = { solutions }/G0.

Note c̃1(E) 6= 0 ⇒ G = G0 ⇒ M =M0.

Proposition

◮ M is compact.

◮ The virtual dimension of M:

d =
1

4
(c̃1(E)2 − sign(X)) − (b0(X; l) − b1(X; l) + b+(X; l)).

If l is nontrivial & X connected ⇒ b0(X; l) = 0.
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Reducibles

◮ Recall g(A,φ) = (A− 2g−1dg, gφ).

◮ If φ 6= 0 ⇒ G-action is free.

◮ The stabilizer of (A, 0) is {±1} ⊂ G0
∼= Γ(X̃ ×{±1} U(1)),

unless E = R⊕ λ and A is flat (⇒ The stabilizer ∼= Z/4).

◮ The elements of the form (A, 0) are called reducibles.

Cf. In the SW-case, the stabilizer of (A, 0) is S1 ⊂ Map(X,S1).

◮ In general, { reducible solutions }/G0
∼= T b1(X;l) ⊂M0.
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Proof of Theorem 1

Theorem 1.(N.)

◮ X: a closed connected ori. smooth 4-manifold.

◮ l→ X: a nontrivial Z-bdl. s.t. w1(λ)2 = 0, where λ = l ⊗ R.

If QX,l is definite ⇒ QX,l ∼ diagonal.

Outline of the proof

◮ We will prove every characteristic element w of QX,l satisfies

|w2| ≥ rankH2(X; l),

by proving for every E,

d = dimM0 ≤ 0.

◮ Then Elkies’ theorem implies QX,l should be standard.
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The structure ofM0 when b+(X; l) = 0

◮ Suppose a Spinc
−-structure (P, τ) on X is given.

◮ For simplicity, assume b1(X, l) = 0.
⇒ ∃1 reducible class ρ0 ∈M0.

◮ Perturb the Pin−(2)-monopole equations by adding
η ∈ Ω+(iλ) to the curvature equation. → F+

A = q(φ) + η.

◮ For generic η, M0 \ {ρ0} is a d-dimensional manifold.

◮ Fix a small neighborhood N(ρ0) of {ρ0}.

⇒ N(ρ0) ∼= R
d/{±1} = a cone of RPd−1

Then M0 :=M0 \N(ρ0) is a compact d-manifold &
∂M0 = RPd−1.
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◮ Let B∗ = (A× (Γ(S+) \ {0})) /G0.

Proposition B∗ ≃
h.e.

RP∞×T b1(X;l).

Cf. In the SW-case, B∗
SW
≃

h.e.

CP∞×T b1(X). B∗ ∼= (B∗
SW

)I .

Lemma
If b+(X; l) = 0 & b1(X; l) = 0 ⇒ d = dimM0 ≤ 0.

Proof

◮ Suppose d > 0.

◮ RecallM0 is a compact d-manifold s.t. ∂M0 = RPd−1.

◮ ∃C ∈ Hd−1(B∗; Z/2) ∼= Hd−1(RP∞; Z/2) s.t.
〈C, [∂M0]〉 6= 0. ⇒ Contradiction.
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◮ Note sign(X) = b+(X; l) − b−(X; l) for any Z-bundle l.

◮ By Lemma, if l is nontrivial & b+(X; l) = 0 & b1(X; l) = 0,

d =
1

4
(c̃1(E)2 − sign(X)) − (b0(X; l) − b1(X; l) + b+(X; l))

=
1

4
(c̃1(E)2 + b2(X; l)) ≤ 0.

Note c̃1(E)2 ≤ 0 if b+(X ; l) = 0.

◮ Therefore, for any E which admits a Spinc
−-structure,

b2(X; l) ≤ |c̃1(E)2|.

By varying E, we can prove every characteristic element w satisfies

b2(X; l) ≤ |w2|.

Nobuhiro Nakamura Pin−(2)-monopole equations and intersection forms



Introduction
Applications

Pin−(2)-monopole equations
Proof of Theorem 1 & 2

Proof of Theorem 1
Proof of Theorem 2

Recall

◮ E admits a Spinc
−-structure

⇔ w2(X) = w2(E) + w1(E)2 = w2(E) + w1(λ)2,
where λ = detE = l ⊗ R.

◮ c̃1(E) ∈ H2(X; l) classifies E s.t. detE = l ⊗ R.

Note that 0→ l
·2
→ l → Z/2→ 0 induces the mod-2-reduction

map [·]2 : H2(X; l)→ H2(X; Z/2) & [c̃1(E)]2 = w2(E). We have,

Theorem
Suppose w1(λ)2 = 0. For every C ∈ H2(X; l) s.t.
w2(X) = [C]2 + w1(λ)2 = [C]2,

|C2| ≥ b2(X; l).
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Lemma
For every characteristic element c of QX,l, ∃ a torsion
δ ∈ H2(X; l) s.t. [c + δ]2 = w2(X).

Then, for ∀ characteristic element c of QX,l

|c2| = |(c + δ)2| ≥ b2(X; l).

By Elkies’ theorem, QX,l ∼diagonal.
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The outline of the proof of Theorem 2
◮ Suppose w1(λ)2 = w2(X). Let E = R⊕ λ.
⇒ ∃ Spinc

−-structure on (X,E). ⇒ G1 6= ∅.
◮ For simplicity, assume b1(X; l) = 0.
◮ Then, by taking finite dimensional approximation of the

monopole map, we obtain a proper Z4-equivariant map

f : R̃
m ⊕C

n+k
1 → R̃

m+b ⊕ C
n
1 ,

where
◮ R̃ is R on which Z4 acts via Z4 → Z2 = {±1}y R,
◮ C1 is C on which Z4 acts by multiplication of i,
◮ k = − sign(X)/8, b = b+(X ; λ), m, n are some integers.

Here, Z4 is generated by the constant section

j ∈ G1 = Γ(X̃ ×{±1} j U(1)).
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◮ By using the techniques of equivariant homotopy theory, e.g.,
tom Dieck’s character formula, we can see that any proper
Z4-map of the form,

f : R̃
m ⊕C

n+k
1 → R̃

m+b ⊕ C
n
1 ,

should satisfy b ≥ k.

◮ That is,

b+(X;λ) ≥ −
1

8
sign(X).
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Finite dimensional approximation

◮ Take a flat connection A0 on R⊕ λ.

Pin−(2)-monopole map

µ : Ω1(iλ)⊕ Γ(S+)→ (Ω0 ⊕Ω+)(iλ) ⊕ Γ(S−) =:W,

(a, φ) 7→ (d∗a, FA0 + d+a + q(φ),DA0+aφ).

◮ Let l(a, φ) := (d∗a, d+a,DA0φ) be the linear part of µ.
→ l is Fredholm.

◮ c = µ− l: quadratic, compact.

◮ Choose a finite dim. subspace U ⊂ W s.t. dim U ≫ 1,
U ⊃ (im l)⊥

◮ Let V := l−1(U) & p : W → U be the L2-projection.

◮ Define f : V → U by f = l + pc. → f : proper, Z4-equiv.
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Remarks for future researches
◮ Pin−(2)-monopole invariants

◮ Calculation, gluing formula, stable cohomotopy refinements

◮ Orbifolds with surface singularities
◮ Exotic involutions Cf. [Fintushel-Stern-Snukujian]
◮ Smooth inequivalent but topologically equivalent embedded

surfaces Cf. [H.J.Kim-Ruberman]

◮ When X̃: symplectic & I∗ω = −ω,

Pin−(2)-monopole inv. =
??

real Gromov-Witten inv.

Cf. [Tian-Wang]

◮ Pin−(2)-monopole Floer theory?
Pin−(2) Heegaard Floer theory?

◮ “Witten conjecture” for Pin−(2)-monopole invariants?
◮ [Feehan-Leness] SW = Donaldson

Pin−(2)-monopole inv. = ???
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