$Pin^{-}(2)$ -monopole equations and intersection forms with local coefficients of 4-manifolds

Nobuhiro Nakamura

The University of Tokyo

November 30, 2010

Nobuhiro Nakamura

 $\operatorname{Pin}^{-}(2)$ -monopole equations and intersection forms

Introduction Applications $Pin^{-}(2)$ -monopole equations Proof of Theorem 1 & 2

Introduction

Froyshov's results Main results

Applications

$\operatorname{Pin}^{-}(2)$ -monopole equations

 ${
m Spin}^{c_-}$ -structures ${
m Pin}^-(2)$ -monopole equations

Proof of Theorem 1 & 2

Proof of Theorem 1 Proof of Theorem 2 • Let X be a closed oriented 4-manifold.

Topological invariants for \boldsymbol{X}

• $\pi_1 X$, cohomology ring, k-invariants...

Intersection form

$$Q_X \colon H^2(X;\mathbb{Z})/\text{torsion} \times H^2(X;\mathbb{Z})/\text{torsion} \to \mathbb{Z},$$
$$(a,b) \mapsto \langle a \cup b, [X] \rangle.$$

• Q_X is a symmetric bilinear unimodular form.

[J.H.C.Whitehead '49]

If $\pi_1 X = 1$, the homotopy type of X is determined by the isomorphism class of Q_X .

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and intersection forms	
$\begin{array}{c} \textbf{Introduction} \\ \text{Applications} \\ \text{Pin}^{-}(2)\text{-monopole equations} \\ \text{Proof of Theorem 1 \& 2} \end{array}$	Froyshov's results Main results	
In 4-dim. TOP		
$\underline{\pi_1 X = 1}$		
[Freedman '82]		
The homeo type of X is determine	ned by	
▶ the iso. class of Q_X if Q_X is	s even,	
▶ the iso. class of Q_X & $ks(X)$ if Q_X is odd.		
$\underline{\pi_1 X \neq 1}$		
If $\pi_1 X$ is "Good" \Rightarrow Freedman the \rightarrow Difficult.	heory + Surgery theory.	

In 4-dim. DIFF

• Let X be a closed oriented smooth 4-manifold.

[Rohlin] If X is spin
$$\Rightarrow$$
 sign $(X) \equiv 0 \mod 16$.
[Donaldson] If Q_X is definite $\Rightarrow Q_X \sim$ The diagonal form.
[Furuta] If X is spin & Q_X is indefinite, then

$$b_2(X) \ge \frac{10}{8}|\operatorname{sign}(X)| + 2.$$

Nobuhiro Nakamura $\operatorname{Pin}^-(2)$ -monopole equations and intersection forms

Refinements, variants

[Furuta-Kametani '05]

The strong 10/8-inequality in the case when $b_1(X) > 0$.

[Froyshov '10]

A local coefficient analogue of Donaldson's theorem.

local coefficients \leftrightarrow double coverings \leftrightarrow $H^1(X; \mathbb{Z}/2)$

Froyshov's results

4-manifolds and intersection forms with local coefficients, arXiv:1004.0077

- Suppose a double covering $\tilde{X} \to X$ is given.
- ▶ $l := \tilde{X} \times_{\mathbb{Z}_2} \mathbb{Z}$, a \mathbb{Z} -bundle over X. $\longrightarrow H^*(X; l)$: *l*-coefficient cohomology.
- ▶ Note $l \otimes l = \mathbb{Z}$. The cup product

 $\cup \colon H^2(X;l) \times H^2(X;l) \to H^4(X;\mathbb{Z}) \cong \mathbb{Z},$

induces the intersection form with local coefficient

 $Q_{X,l} \colon H^2(X;l) / \text{torsion} \times H^2(X;l) / \text{torsion} \to \mathbb{Z}.$

• $Q_{X,l}$ is also a symmetric bilinear unimodular form.

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and intersection forms
Introduction Applications Pin ⁻ (2)-monopole equations Proof of Theorem 1 & 2	Froyshov's results Main results

A special case of Froyshov's theorem

 \blacktriangleright X: a closed connected oriented smooth 4-manifold s.t.

$$b^{+}(X) + \dim_{\mathbb{Z}/2}(\operatorname{tor} H_{1}(X;\mathbb{Z}) \otimes \mathbb{Z}/2) \leq 2.$$
(1)

• $l \rightarrow X$: a nontrivial \mathbb{Z} -bundle.

If $Q_{X,l}$ is definite $\Rightarrow Q_{X,l} \sim \text{diagonal}$.

The original form of Froyshov's theorem is:
If X with ∂X = Y : ℤHS³ satisfies (1) & Q_{X,l} is nonstandard definite ⇒ δ₀: HF⁴(Y; ℤ/2) → ℤ/2 is non-zero.
Y = S³ ⇒ HF⁴(Y; ℤ/2) = 0 ⇒The above result.

- The proof uses the moduli space of SO(3)-instantons on a SO(3)-bundle V.
- Twisted reducibles (stabilizer ≅ Z/2) play an important role. V is reduced to λ ⊕ E, where E is an O(2)-bundle, λ = det E: nontrivial.
- Cf [Fintushel-Stern'84] gives an alternative proof of Donaldson's theorem by using SO(3)-instantons.

 \longrightarrow Abelian reducibles (stabilizer \cong U(1))

V is reduced to $\underline{\mathbb{R}} \oplus L$, where L is a $\mathrm{U}(1)$ -bundle.

- Donaldson's theorem is proved by Seiberg-Witten theory, too.

Question

Can we prove Froyshov's result by Seiberg-Witten theory?

 \longrightarrow Our result would be an answer.

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and intersection forms
Introduction Applications Pin ⁻ (2)-monopole equations Proof of Theorem 1 & 2	Froyshov's results Main results

Main results

Theorem 1.(N.)

- X: a closed connected ori. smooth 4-manifold.
- ▶ $l \to X$: a nontrivial \mathbb{Z} -bdl. s.t. $w_1(\lambda)^2 = 0$, where $\lambda = l \otimes \mathbb{R}$.

If
$$Q_{X,l}$$
 is definite $\Rightarrow Q_{X,l} \sim \text{diagonal}$.

Cf. Froyshov's theorem

- ▶ X: s.t. $b^+(X) + \dim_{\mathbb{Z}/2}(\operatorname{tor} H_1(X;\mathbb{Z}) \otimes \mathbb{Z}/2) \leq 2$.
- $l \to X$: a nontrivial \mathbb{Z} -bundle.

If
$$Q_{X,l}$$
 is definite $\Rightarrow Q_{X,l} \sim \text{diagonal}$.

Main results

Theorem 1.(N.)

- X: a closed connected ori. smooth 4-manifold.
- ▶ $l \to X$: a nontrivial \mathbb{Z} -bdl. s.t. $w_1(\lambda)^2 = 0$, where $\lambda = l \otimes \mathbb{R}$.

If $Q_{X,l}$ is definite $\Rightarrow Q_{X,l} \sim \text{diagonal}$.

 For the proof, we will introduce a variant of Seiberg-Witten equations

 $\longrightarrow \operatorname{Pin}^{-}(2)$ -monopole equations on $\operatorname{Spin}^{c_{-}}$ -structures on X.

 Spin^{c-}-structure is a Pin⁻(2)-variant of Spin^c-str. defined by M.Furuta, whose complex structure is "twisted along *l*".

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and intersection forms
Introduction Applications Pin ⁻ (2)-monopole equations Proof of Theorem 1 & 2	Froyshov's results Main results

• The moduli space of $Pin^{-}(2)$ -monopoles is compact. \longrightarrow Bauer-Furuta theory can be developed.

Furuta's theorem

Let X be a closed ori. smooth spin 4-manifold with indefinite Q_X .

$$b_+(X) \ge -\frac{\operatorname{sign}(X)}{8} + 1.$$

Theorem 2(N.)

Let X be a closed connected ori. smooth 4-manifold. For any nontrivial \mathbb{Z} -bundle $l \to X$ s.t. $w_1(\lambda)^2 = w_2(X)$, where $\lambda = l \otimes \mathbb{R}$,

$$b_+(X;\lambda) \ge -\frac{\operatorname{sign}(X)}{8},$$

where $b_+(X;\lambda) = \operatorname{rank} H^+(X;\lambda)$.

Applications

Recall fundamental theorems.

- 1. [Rohlin] X^4 : closed spin \Rightarrow sign $(X) \equiv 0 \mod 16$.
- 2. [Donaldson] Definite \Rightarrow diagonal.
- 3. [Furuta] The 10/8-inequality
- 3' [Furuta-Kametani] The strong 10/8-inequality in the case when $b_1 > 0$.

Corollary 1(N.)

 \exists Nonsmoothable closed indefinite spin 4-manifolds satisfying

- $\operatorname{sign}(X) \equiv 0 \mod 16$,
- ▶ the strong 10/8-inequality.

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and intersection forms
Introduction	
$\operatorname{Pin}^{-}(2)$ -monopole equations	
Proof of Theorem 1 & 2	

Proof

- Let M be T^4 or $T^2 \times S^2$. $\Rightarrow Q_{T^4} = 3H$, $Q_{T^2 \times S^2} = H$.
- If $l' \to M$ is any nontrivial \mathbb{Z} -bundle, $\Rightarrow b_2(M; l') = 0 \& w_1(l' \otimes \mathbb{R})^2 = 0.$
- Let V be a topological 4-manifold s.t. $\pi_1 V = 1$, Q_V is even and definite, $\operatorname{sign}(V) \equiv 0 \mod 16$. ($\Rightarrow V \text{ is spin.}$)
- Choose a large k s.t. X = V#kM satisfies the strong 10/8-inequality.
- Let $l := \underline{\mathbb{Z}} \# kl' \to X$. $\Rightarrow Q_{X,l} = Q_V$, $w_1(l \otimes \mathbb{R})^2 = 0$.
- Suppose X is smooth. By Theorem 1, $Q_{X,l} = Q_V \sim \text{diagonal. Contradiction.}$

Remark

Similar examples can be constructed by using Theorem 2.

Non-spin manifolds

10/8-conjecture

Every non-spin closed smooth 4-manifold X with even form satisfies

$$b_2(X) \ge \frac{10}{8} |\operatorname{sign}(X)|.$$

[Bohr,'02],[Lee-Li,'00]

If the 2-torsion part of $H_1(X;\mathbb{Z})$ is $\mathbb{Z}/2^i$ or $\mathbb{Z}/2 \oplus \mathbb{Z}/2$ \Rightarrow the 10/8-conjecture is true.

Corollary 2(N.)

 \exists Nonsmoothable non-spin 4-manifolds X with even form s.t.

- the 2-torsion part of $H_1(X;\mathbb{Z})\cong \mathbb{Z}/2$,
- ▶ the 10/8-conjecture is true.

The outline of the proof of Theorem 1

- The proof of Theorem 1 is almost parallel to the SW-proof of Donaldson's theorem.
- By using Pin⁻(2)-monopole moduli, we will prove every characteristic element w of Q_{X,l} satisfies |w²| ≥ rank H²(X; l). ↔ (The dim. of the moduli) ≤ 0
- Then Elkies' theorem implies $Q_{X,l}$ should be standard.
- An element w in a unimodular lattice L is called *characteristic* if $w \cdot v \equiv v \cdot v \mod 2$ for $\forall v \in L$.

[Elkies '95]

If every characteristic element $w \in L$ satisfies $|w^2| \ge \operatorname{rank} L$, then $L \cong$ diagonal.

 Spin^{c-} -structures $\operatorname{Pin}^{-}(2)$ -monopole equations

$Pin^{-}(2)$ -monopole equations

$$\operatorname{Pin}^{-}(2) = \langle \mathrm{U}(1), j \rangle = \mathrm{U}(1) \cup j \, \mathrm{U}(1) \subset \operatorname{Sp}(1) \subset \mathbb{H}.$$

The two-to-one homomorphism $\mathrm{Pin}^-(2) \to \mathrm{O}(2)$ is defined by

$$z \in \mathrm{U}(1) \subset \mathrm{Pin}^{-}(2) \mapsto z^{2} \in \mathrm{U}(1) \subset \mathrm{O}(2),$$
$$j \mapsto \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}.$$

Definition $\operatorname{Spin}^{c_{-}}(n) := \operatorname{Spin}(n) \times_{\{\pm 1\}} \operatorname{Pin}^{-}(2).$

$$1 \to {\pm 1} \to {\operatorname{Spin}}^{c_{-}}(n) \to {\operatorname{SO}}(n) \times {\operatorname{O}}(2) \to 1.$$

Cf. $\operatorname{Spin}^{c}(n) = \operatorname{Spin}(n) \times_{\{\pm 1\}} \operatorname{U}(1).$

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and intersection forms
Introduction Applications ${ m Pin}^-(2)$ -monopole equations Proof of Theorem 1 & 2	${{ m Spin}}^c-$ -structures ${{ m Pin}}^-(2)$ -monopole equations

$\operatorname{Spin}^{c_{-}}\operatorname{-structures}$

- Let X be an oriented n-manifold.
- Fix a Riemannian metric. $\longrightarrow F(X)$: The SO(*n*)-frame bundle.
- Suppose an O(2)-bundle E over X is given.

$\operatorname{Spin}^{c_{-}}$ -structure

A Spin^{*c*}-structure on (X, E) is given by (P, τ) s.t.

- ▶ P: a Spin^{c_-}(n)-bundle over X,
- $\blacktriangleright \tau \colon P/\{\pm 1\} \xrightarrow{\cong} F(X) \times_X E.$

Proposition(Furuta '08)

 $\exists \operatorname{Spin}^{c_{-}}\operatorname{-structure} \text{ on } (X, E) \Leftrightarrow w_{2}(X) = w_{2}(E) + w_{1}(E)^{2}.$

 ${{
m Spin}}^{c-}$ -structures ${
m Pin}^{-}(2)$ -monopole equations

The case when n = 4

- $\operatorname{Spin}(4) = \operatorname{Sp}(1) \times \operatorname{Sp}(1).$
- ► $\operatorname{Spin}^{c_{-}}(4) = (\operatorname{Sp}(1) \times \operatorname{Sp}(1) \times \operatorname{Pin}^{-}(2))/\{\pm 1\} \ni [q_{+}, q_{-}, u].$

 $\operatorname{Spin}^{c_{-}}(4)$ -modules \mathbb{H}_{T} , \mathbb{H}_{+} and \mathbb{H}_{-}

- ▶ \mathbb{H}_T , \mathbb{H}_+ , $\mathbb{H}_- \cong \mathbb{H}$ as vector spaces.
- ▶ The actions of $[q_+, q_-, u] \in \operatorname{Spin}^{c_-}(4)$ are given by

$\mathbb{H}_T \ni v \mapsto q_+ v q^{-1}$	$\longrightarrow P \times_{\operatorname{Spin}^{c_{-}}(4)} \mathbb{H}_{T} \cong TX$
$\mathbb{H}_{\pm} \ni \phi \mapsto q_{\pm} \phi u^{-1}$	$\longrightarrow P \times_{\operatorname{Spin}^{c}(4)} \mathbb{H}_{\pm} =: S^{\pm}$

 S^{\pm} are the positive/negative spinor bundles.

Introduction Spin^{c} -structures	Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and intersection forms
Introduction $Spin^c = -structures$		
Introduction Applications Spin^c -structures		
$Pin^{-}(2)$ -monopole equations $Pin^{-}(2)$ -monopole equations	Introduction Applications Pin [_] (2)-monopole equations	Spin^{c} structures $\operatorname{Pin}^{-}(2)$ -monopole equations

The Clifford multiplication Define the $Spin^{c-}(4)$ -equivariant map

$$\rho_0 \colon \mathbb{H}_T \times \mathbb{H}_+ \to \mathbb{H}_-, (v, \phi) \mapsto \bar{v}\phi.$$
$$\longrightarrow \rho \colon \Omega^1(X) \times \Gamma(S^+) \to \Gamma(S^-).$$

Twisted complex version

- ▶ $\operatorname{Spin}^{c_{-}}(4) = \operatorname{Spin}(n) \times_{\{\pm 1\}} \operatorname{Pin}^{-}(2)$ has two components.
- Let $G_0 \subset \operatorname{Spin}^{c_-}(4)$ be the identity component.
- Let ε : $\operatorname{Spin}^{c_{-}}(4) \to \operatorname{Spin}^{c_{-}}(4)/G_{0} \cong \{\pm 1\}$ be the projection. $\longrightarrow P \times_{\varepsilon} \mathbb{R} = \det E =: \lambda$
- Let $\operatorname{Spin}^{c_{-}}(4)$ act on \mathbb{C} by complex conjugation via ε .
- Define the $\operatorname{Spin}^{c_{-}}(4)$ -equivariant map,

$$\rho_0 \colon \mathbb{H}_T \otimes_{\mathbb{R}} \mathbb{C} \times \mathbb{H}_+ \to \mathbb{H}_-, (v \otimes a, \phi) \mapsto \bar{v}\phi\bar{a}.$$
$$\longrightarrow \rho \colon \Omega^1(\underline{\mathbb{R}} \oplus i\lambda) \times \Gamma(S^+) \to \Gamma(S^-).$$

 ${{\rm Spin}}^{c-}$ -structures ${{\rm Pin}}^{-}(2)$ -monopole equations

Dirac operator

An O(2)-connection A on E + Levi-Civita connection

 $\rightarrow \mathsf{A}\ \mathrm{Spin}^{c_{-}}(4)\text{-connection }\mathbb{A}$ on P

 \rightarrow Dirac operator

$$D_A \colon \Gamma(S^+) \to \Gamma(S^-).$$

If A' is another O(2)-connection $\Rightarrow a = A - A' \in \Omega^1(i\lambda)$.

$$D_{A+a}\phi = D_A\phi + \rho(a)\phi.$$

Nobuhiro Nakamura	$\operatorname{Pin}^{-}(2)$ -monopole equations and intersection forms
-------------------	--

Introduction Applications Pin ⁻ (2)-monopole equations Proof of Theorem 1 & 2	${ m Spin}^{c-}$ -structures ${ m Pin}^-(2)$ -monopole equations
---	--

Quadratic map

Let $x = [q_+, q_-, u] \in \operatorname{Spin}^{c_-}(4)$ act on $\operatorname{im} \mathbb{H}$ by

$$\operatorname{im} \mathbb{H} \ni v \mapsto \varepsilon(x)q_+vq_+^{-1} \longrightarrow \Gamma(P \times_{\operatorname{Spin}^{c_-}(4)} \operatorname{im} \mathbb{H}) \cong \Omega^+(i\lambda).$$

Then $\phi \in \mathbb{H}_+ \mapsto \phi i \bar{\phi} \in \operatorname{im} \mathbb{H}$ is $\operatorname{Spin}^{c_-}(4)$ -equivariant. We obtain

$$q: \Gamma(S^+) \to \Omega^+(i\lambda).$$

$Pin^{-}(2)$ -monopole equations

Let \mathcal{A} be the space of O(2)-connections on E. For $(A, \phi) \in \mathcal{A} \times \Gamma(S^+)$, $\operatorname{Pin}^-(2)$ -monopole equations are defined by

$$\begin{cases} D_A \phi = 0, \\ F_A^+ = q(\phi) \end{cases}$$

 ${
m Spin}^{c-}$ -structures ${
m Pin}^-(2)$ -monopole equations

Relation to Seiberg-Witten theory

- $\operatorname{Spin}^{c_{-}}(4) = \operatorname{Spin}(4) \times_{\{\pm 1\}} \operatorname{Pin}^{-}(2)$ has two component.
- The identity compo. $G_0 = \operatorname{Spin}(4) \times_{\{\pm 1\}} \operatorname{U}(1) = \operatorname{Spin}^c(4).$

•
$$\operatorname{Spin}^{c_{-}}(4)/G_{0} = \mathbb{Z}/2.$$

- Let (P, τ) be a $\operatorname{Spin}^{c_{-}}$ -structure on (X, E).
- $\tilde{X} = P/G_0 \rightarrow X$ is a double covering s.t.

$$\lambda := \tilde{X} \times_{\{\pm 1\}} \mathbb{R} \cong \det E.$$

•
$$P \to \tilde{X}$$
 is a $G_0 = \operatorname{Spin}^c(4)$ -bundle.

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and intersection forms
Introduction Applications	${ m Spin}^{c-}$ -structures

$$P = P \curvearrowleft J$$

$$\downarrow \operatorname{Spin}^{c_{-}}(4) \qquad \qquad \downarrow G_{0} = \operatorname{Spin}^{c}(4)$$

$$X \leftarrow 2:1 \qquad P/G_{0} = \tilde{X} \curvearrowleft \iota$$

- $\iota \colon \tilde{X} \to \tilde{X}$, the covering transformation.
- ► $J = [1, 1, j] \in (\operatorname{Sp}(1) \times \operatorname{Sp}(1) \times \operatorname{Pin}^{-}(2))/{\pm 1} = \operatorname{Spin}^{c_{-}}(4)$
- The Spin^c -structure c on \tilde{X} is induced from $P \to \tilde{X}$.
- The J-action induces antilinear involutions I on the spinor bundles and the determinant line bundle of c.

 $\operatorname{Pin}^{-}(2)$ -monopole theory on X = I-invariant SW theory on \tilde{X} .

 $\frac{{
m Spin}^{c-}}{{
m Pin}^{-}(2)}$ -structures equations

Gauge transformation group

 $\mathcal{G} := \{ \operatorname{Spin}^{c_{-}}(4) \text{-equiv. diffeos of } P \text{ covering the id. of } P/\operatorname{Pin}^{-}(2) \} \\ \cong \Gamma(P \times_{\operatorname{ad}} \operatorname{Pin}^{-}(2)),$

where "ad" is the adjoint action on $\operatorname{Pin}^{-}(2)$ by $\operatorname{Pin}^{-}(2)$ -compo. of $\operatorname{Spin}^{c_{-}}(4) = \operatorname{Spin}(4) \times_{\{\pm 1\}} \operatorname{Pin}^{-}(2)$.

 $g \in \mathcal{G}$ acts on $(A, \phi) \in \mathcal{A} \times \Gamma(S^+)$ by $g(A, \phi) = (A - 2g^{-1}dg, g\phi)$.

Cf. In the SW-case, $\mathcal{G}_{SW} = \operatorname{Map}(X, S^1)$.

The moduli space $\mathcal{M} = \{ \text{ solutions } \} / \mathcal{G}.$

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and intersection forms
Introduction Applications Pin ⁻ (2)-monopole equations Proof of Theorem 1 & 2	${ m Spin}^{c-}$ -structures ${ m Pin}^-(2)$ -monopole equations
What is $\mathcal{G} = \Gamma(P \times_{\mathrm{ad}} \mathrm{Pin}^{-}(2))$)?
▶ $\operatorname{Pin}^{-}(2) = \operatorname{U}(1) \cup j \operatorname{U}(1).$	
For $u, z \in \mathrm{U}(1)$, $\mathrm{ad}_z(u)$	$u)=zuar{z}=u,$
$\mathrm{ad}_{jz}(u)$	$u) = jzu\bar{z}(-j) = \bar{u},$
$\mathrm{ad}_z(ju$	$u) = z^2 j u,$
$\mathrm{ad}_{jz}(ju)$	$z(x) = \bar{z}^2 j \bar{u}.$
$\Rightarrow \mathcal{G} = \mathcal{G}_0 \cup \mathcal{G}_1,$	$\mathcal{G}_0 = \Gamma(P \times_{\mathrm{ad}} \mathrm{U}(1)),$
	$\mathcal{G}_1 = \Gamma(P \times_{\mathrm{ad}} j \operatorname{U}(1)).$

► Note $\mathcal{G}_0 \cong \Gamma(\tilde{X} \times_{\{\pm 1\}} U(1))$, where $\{\pm 1\}$ acts on U(1) by complex conjugation.

Define the involution I on $\mathcal{G}_{SW} = \operatorname{Map}(\tilde{X}; S^1)$ by $Ig = \overline{\iota^* g}$, where $\iota \colon \tilde{X} \to \tilde{X}$ the covering transformation. $\Rightarrow \mathcal{G}_0 = (\mathcal{G}_{SW})^I$.

 ${
m Spin}^{c-}$ -structures ${
m Pin}^-(2)$ -monopole equations

Proposition $\mathcal{G}_1 = \Gamma(P \times_{\mathrm{ad}} j \operatorname{U}(1)) \neq \emptyset \Leftrightarrow \tilde{c}_1(E) = 0.$

- ► The iso. classes of O(2)-bundle E over X s.t. det $E \cong \lambda$ are classified by $\tilde{c}_1(E) \in H^2(X; l)$. \leftarrow Proved by Froyshov.
- $\bullet \ \tilde{c}_1(E) = 0 \Leftrightarrow E \cong \underline{\mathbb{R}} \oplus \lambda.$
- Since $\operatorname{ad}_z(ju) = z^2 ju$ & $\operatorname{ad}_{jz}(ju) = \overline{z}^2 j\overline{u}$,

 $P \times_{\mathrm{ad}} j \operatorname{U}(1) \cong S(E)$: The bundle of unit vectors of E.

Nobuhiro Nakamura $Pin^{-}(2)$ -monopole equations and intersection forms

Introduction Applications Pin ⁻ (2)-monopole equations Proof of Theorem 1 & 2	${ m Spin}^{c-}$ -structures ${ m Pin}^-(2)$ -monopole equations
---	--

The moduli space

 $\mathcal{M} = \{ \text{ solutions } \} / \mathcal{G},$ $\mathcal{M}_0 = \{ \text{ solutions } \} / \mathcal{G}_0.$

Note $\tilde{c}_1(E) \neq 0 \Rightarrow \mathcal{G} = \mathcal{G}_0 \Rightarrow \mathcal{M} = \mathcal{M}_0$.

Proposition

- ► *M* is compact.
- The virtual dimension of \mathcal{M} :

$$d = \frac{1}{4}(\tilde{c}_1(E)^2 - \operatorname{sign}(X)) - (b_0(X;l) - b_1(X;l) + b_+(X;l)).$$

If l is nontrivial & X connected $\Rightarrow b_0(X; l) = 0.$

 ${\rm Spin}^{c-}$ -structures ${\rm Pin}^-(2)$ -monopole equations

Reducibles

- Recall $g(A, \phi) = (A 2g^{-1}dg, g\phi)$.
- If $\phi \neq 0 \Rightarrow \mathcal{G}$ -action is free.
- The stabilizer of (A, 0) is $\{\pm 1\} \subset \mathcal{G}_0 \cong \Gamma(\tilde{X} \times_{\{\pm 1\}} U(1))$, unless $E = \mathbb{R} \oplus \lambda$ and A is flat (\Rightarrow The stabilizer $\cong \mathbb{Z}/4$).
- The elements of the form (A, 0) are called reducibles.
- Cf. In the SW-case, the stabilizer of (A, 0) is $S^1 \subset Map(X, S^1)$.
 - ▶ In general, { reducible solutions }/ $\mathcal{G}_0 \cong T^{b_1(X;l)} \subset \mathcal{M}_0.$

Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and intersection forms
Introduction	
Applications $\operatorname{Pin}^{-}(2)$ -monopole equations	Proof of Theorem 2
Proof of Theorem 1 & 2	

Proof of Theorem 1

Theorem 1.(N.)

- \blacktriangleright X: a closed connected ori. smooth 4-manifold.
- $l \to X$: a nontrivial \mathbb{Z} -bdl. s.t. $w_1(\lambda)^2 = 0$, where $\lambda = l \otimes \mathbb{R}$.

If $Q_{X,l}$ is definite $\Rightarrow Q_{X,l} \sim \text{diagonal}$.

Outline of the proof

• We will prove every characteristic element w of $Q_{X,l}$ satisfies

$$w^2 \ge \operatorname{rank} H^2(X; l),$$

by proving for every E,

$$d = \dim \mathcal{M}_0 \le 0.$$

• Then Elkies' theorem implies $Q_{X,l}$ should be standard.

The structure of \mathcal{M}_0 when $b_+(X; l) = 0$

- Suppose a Spin^{c_-}-structure (P, τ) on X is given.
- For simplicity, assume $b_1(X, l) = 0$. $\Rightarrow \exists^1 \text{ reducible class } \rho_0 \in \mathcal{M}_0.$
- Perturb the $\operatorname{Pin}^{-}(2)$ -monopole equations by adding $\eta \in \Omega^{+}(i\lambda)$ to the curvature equation. $\rightarrow F_{A}^{+} = q(\phi) + \eta$.
- For generic η , $\mathcal{M}_0 \setminus \{\rho_0\}$ is a *d*-dimensional manifold.
- Fix a small neighborhood $N(\rho_0)$ of $\{\rho_0\}$. $\Rightarrow N(\rho_0) \cong \mathbb{R}^d / \{\pm 1\} = \text{ a cone of } \mathbb{R}P^{d-1}$

Then $\overline{\mathcal{M}_0} := \overline{\mathcal{M}_0 \setminus N(\rho_0)}$ is a compact *d*-manifold & $\partial \overline{\mathcal{M}_0} = \mathbb{R}P^{d-1}$.

• Let $\mathcal{B}^* = (\mathcal{A} \times (\Gamma(S^+) \setminus \{0\})) / \mathcal{G}_0.$

Proposition $\mathcal{B}^* \simeq \mathbb{R}P^{\infty} \times T^{b_1(X;l)}$. *Cf.* In the SW-case, $\mathcal{B}^*_{SW} \simeq \mathbb{C}P^{\infty} \times T^{b_1(X)}$. $\mathcal{B}^* \cong (\mathcal{B}^*_{SW})^I$.

Lemma

If $b_+(X;l) = 0$ & $b_1(X;l) = 0 \Rightarrow d = \dim \mathcal{M}_0 \le 0$.

Proof

- Suppose d > 0.
- ▶ Recall $\overline{\mathcal{M}_0}$ is a compact *d*-manifold s.t. $\partial \overline{\mathcal{M}_0} = \mathbb{R}P^{d-1}$.
- ► $\exists C \in H^{d-1}(\mathcal{B}^*; \mathbb{Z}/2) \cong H^{d-1}(\mathbb{R}P^\infty; \mathbb{Z}/2)$ s.t. $\langle C, [\partial \overline{\mathcal{M}_0}] \rangle \neq 0. \Rightarrow \text{Contradiction}.$

Nobuhiro Nakamura $\operatorname{Pin}^{-}(2)$ -monopole equations and intersection forms
--

- Note $sign(X) = b_+(X; l) b_-(X; l)$ for any \mathbb{Z} -bundle l.
- By Lemma, if l is nontrivial & $b_+(X;l) = 0$ & $b_1(X;l) = 0$,

$$d = \frac{1}{4} (\tilde{c}_1(E)^2 - \operatorname{sign}(X)) - (b_0(X;l) - b_1(X;l) + b_+(X;l))$$

= $\frac{1}{4} (\tilde{c}_1(E)^2 + b_2(X;l)) \le 0.$

Note $\tilde{c}_1(E)^2 \le 0$ if $b_+(X; l) = 0$.

• Therefore, for any E which admits a $\text{Spin}^{c_{-}}$ -structure,

$$b_2(X;l) \le |\tilde{c}_1(E)^2|.$$

By varying E, we can prove every characteristic element w satisfies

$$b_2(X;l) \le |w^2|.$$

Proof of Theorem 1 Proof of Theorem 2

Recall

- E admits a Spin^{*c*-}-structure $\Leftrightarrow w_2(X) = w_2(E) + w_1(E)^2 = w_2(E) + w_1(\lambda)^2$, where $\lambda = \det E = l \otimes \mathbb{R}$.
- $\tilde{c}_1(E) \in H^2(X; l)$ classifies E s.t. det $E = l \otimes \mathbb{R}$.

Note that $0 \to l \xrightarrow{\cdot 2} l \to \mathbb{Z}/2 \to 0$ induces the mod-2-reduction map $[\cdot]_2 \colon H^2(X; l) \to H^2(X; \mathbb{Z}/2)$ & $[\tilde{c}_1(E)]_2 = w_2(E)$. We have,

Theorem

Suppose $w_1(\lambda)^2 = 0$. For every $C \in H^2(X;l)$ s.t. $w_2(X) = [C]_2 + w_1(\lambda)^2 = [C]_2$,

$$|C^2| \ge b_2(X;l).$$

Introduction Applications Proof of Theorem 1	Nobuhiro Nakamura	$\operatorname{Pin}^-(2)$ -monopole equations and intersection forms
Introduction Applications Proof of Theorem 1		
Introduction Applications Proof of Theorem 1		
	Introduction Applications	Proof of Theorem 1
$Pin^{-}(2)$ -monopole equations Proof of Theorem 2	$\operatorname{Pin}^-(2)$ -monopole equations	Proof of Theorem 2

Lemma

For every characteristic element c of $Q_{X,l}$, \exists a torsion $\delta \in H^2(X; l)$ s.t. $[c + \delta]_2 = w_2(X)$.

Then, for \forall characteristic element c of $Q_{X,l}$

$$|c^2| = |(c+\delta)^2| \ge b_2(X;l).$$

By Elkies' theorem, $Q_{X,l} \sim \text{diagonal}$.

Proof of Theorem 1 Proof of Theorem 2

The outline of the proof of Theorem 2

- Suppose $w_1(\lambda)^2 = w_2(X)$. Let $E = \underline{\mathbb{R}} \oplus \lambda$. $\Rightarrow \exists \operatorname{Spin}^{c_-}\operatorname{-structure}$ on (X, E). $\Rightarrow \mathcal{G}_1 \neq \emptyset$.
- For simplicity, assume $b_1(X; l) = 0$.
- ► Then, by taking finite dimensional approximation of the monopole map, we obtain a proper Z₄-equivariant map

$$f: \tilde{\mathbb{R}}^m \oplus \mathbb{C}^{n+k}_1 \to \tilde{\mathbb{R}}^{m+b} \oplus \mathbb{C}^n_1,$$

where

- $\mathbb{\tilde{R}}$ is \mathbb{R} on which \mathbb{Z}_4 acts via $\mathbb{Z}_4 \to \mathbb{Z}_2 = \{\pm 1\} \curvearrowright \mathbb{R}$,
- \mathbb{C}_1 is \mathbb{C} on which \mathbb{Z}_4 acts by multiplication of i,
- $k = -\operatorname{sign}(X)/8$, $b = b_+(X; \lambda)$, m, n are some integers.

Here, \mathbb{Z}_4 is generated by the constant section

$$j \in \mathcal{G}_1 = \Gamma(\tilde{X} \times_{\{\pm 1\}} j \operatorname{U}(1)).$$

Nobuhiro Nakamura	$\mathrm{Pin}^-(2)$ -monopole equations and intersection forms
Introduction Applications Pin ⁻ (2)-monopole equations Proof of Theorem 1 & 2	Proof of Theorem 1 Proof of Theorem 2

By using the techniques of equivariant homotopy theory, e.g., tom Dieck's character formula, we can see that any proper Z₄-map of the form,

$$f\colon \mathbb{\tilde{R}}^m\oplus \mathbb{C}^{n+k}_1\to \mathbb{\tilde{R}}^{m+b}\oplus \mathbb{C}^n_1,$$

should satisfy $b \ge k$.

That is,

$$b_+(X;\lambda) \ge -\frac{1}{8}\operatorname{sign}(X).$$

Finite dimensional approximation

• Take a flat connection A_0 on $\underline{\mathbb{R}} \oplus \lambda$.

 $\operatorname{Pin}^{-}(2)$ -monopole map

$$\mu \colon \Omega^1(i\lambda) \oplus \Gamma(S^+) \to (\Omega^0 \oplus \Omega^+)(i\lambda) \oplus \Gamma(S^-) =: \mathcal{W},$$
$$(a,\phi) \mapsto (d^*a, F_{A_0} + d^+a + q(\phi), D_{A_0 + a}\phi).$$

- Let $l(a, \phi) := (d^*a, d^+a, D_{A_0}\phi)$ be the linear part of μ . $\rightarrow l$ is Fredholm.
- $c = \mu l$: quadratic, compact.
- Choose a finite dim. subspace $U \subset \mathcal{W}$ s.t. $\dim U \gg 1$, $U \supset (\operatorname{im} l)^{\perp}$
- Let $V := l^{-1}(U)$ & $p \colon \mathcal{W} \to U$ be the L^2 -projection.
- ▶ Define $f: V \to U$ by f = l + pc. $\to f$: proper, \mathbb{Z}_4 -equiv.

Nobuhiro Nakamura	Pin (2)-monopole equations and intersection forms
Introduction Applications Pin ⁻ (2)-monopole equations Proof of Theorem 1 & 2	Proof of Theorem 1 Proof of Theorem 2

Remarks for future researches

- Pin⁻(2)-monopole invariants
 - Calculation, gluing formula, stable cohomotopy refinements
- Orbifolds with surface singularities
 - Exotic involutions *Cf.* [Fintushel-Stern-Snukujian]
 - Smooth inequivalent but topologically equivalent embedded surfaces *Cf.* [H.J.Kim-Ruberman]
- When \tilde{X} : symplectic & $I^*\omega = -\omega$,

 $Pin^{-}(2)$ -monopole inv. = real Gromov-Witten inv.

Cf. [Tian-Wang]

- Pin⁻(2)-monopole Floer theory? Pin⁻(2) Heegaard Floer theory?
- "Witten conjecture" for $Pin^{-}(2)$ -monopole invariants?
 - [Feehan-Leness] SW = Donaldson $\operatorname{Dim}^{-}(2)$ managed in (222)
 - $Pin^{-}(2)$ -monopole inv. = ???