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» Let X be a closed oriented 4-manifold.

Topological invariants for X

» 11X, cohomology ring, k-invariants...

Intersection form

Qx: H*(X;Z)/torsion x H*(X;Z)/torsion — Z,
(a,b) — (@ UDb, [X]).

> ()x is a symmetric bilinear unimodular form.

[J.H.C.Whitehead '49]

If 71X =1, the homotopy type of X is determined by the
isomorphism class of Q) x.
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In 4-dim. TOP

7TlX:1

[Freedman '82]
The homeo type of X is determined by
» the iso. class of Qx if Qx is even,
> the iso. class of Qx & ks(X) if Qx is odd.

7TlX7él

If 71X is “Good" = Freedman theory + Surgery theory.
— Difficult.
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In 4-dim. DIFF

» Let X be a closed oriented smooth 4-manifold.

[Rohlin] If X is spin = sign(X) =0 mod 16.

[Donaldson| [ If Qx is definite = Qx ~ The diagonal form.

[Furuta] If X is spin & Qx is indefinite, then

10
ba(X) > §|sign(X)| + 2.
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Refinements, variants

[Furuta-Kametani '05]
The strong 10/8-inequality in the case when b;(X) > 0.

[Froyshov '10]
A local coefficient analogue of Donaldson’s theorem.

local coefficients < double coverings «+ H'(X;Z/2)
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Froyshov's results

4-manifolds and intersection forms with local coefficients, arXiv:1004.0077

» Suppose a double covering X — X is given.

> =X X7, 2, a Z-bundle over X.
— H*(X;1): l-coefficient cohomology.

» Note [ ® [ = 7Z. The cup product
U: H*(X;1) x H*(X;1) — HY(X;Z) = Z,
induces the intersection form with local coefficient
Qx.: H*(X;1)/torsion x H*(X;1)/torsion — Z.

> (Qx is also a symmetric bilinear unimodular form.
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A special case of Froyshov's theorem

» X: a closed connected oriented smooth 4-manifold s.t.
b (X) + dimg s (torH (X;Z) @ Z/2) < 2. (1)

» [ — X: a nontrivial Z-bundle.

If x is definite = ()x; ~ diagonal.

» The original form of Froyshov's theorem is:

If X with 0X =Y : ZHS? satisfies (1)
& ()x, is nonstandard definite
= 0o: HF*(Y;Z/2) — 7Z/2 is non-zero.
» Y =53 = HFYY;Z/2) = 0 =The above result.
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» The proof uses the moduli space of SO(3)-instantons on a
SO(3)-bundle V.

» Twisted reducibles (stabilizer = Z/2) play an important role.
V' is reduced to A @ E, where F is an O(2)-bundle,

A = det E: nontrivial.

Cf [Fintushel-Stern'84] gives an alternative proof of Donaldson's
theorem by using SO(3)-instantons.
— Abelian reducibles (stabilizer = U(1))
V is reduced to R @ L, where L is a U(1)-bundle.

- Donaldson’s theorem is proved by Seiberg-Witten theory, too.

Question
Can we prove Froyshov's result by Seiberg-Witten theory?

—— Qur result would be an answer.
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Main results
Theorem 1.(N.)

» X: a closed connected ori. smooth 4-manifold.

» [ — X: a nontrivial Z-bdl. s.t. w1(\)? =0, where A\ = [ ®@ R.

If Qx,; is definite = ()x; ~ diagonal.

Cf. Froyshov's theorem

> X: — st b7 (X) 4 dimg o (torH (X;Z) ® Z/2) < 2.
» [ — X: a nontrivial Z-bundle.

If Qx, is definite = ()x; ~ diagonal.
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Main results
Theorem 1.(N.)

» X: a closed connected ori. smooth 4-manifold.
» [ — X: a nontrivial Z-bdl. s.t. w1(\)? =0, where A\ = [ @ R.

If Qx, is definite = (Qx; ~ diagonal.

» For the proof, we will introduce a variant of Seiberg-Witten
equations
— Pin™ (2)-monopole equations on Spin®--structures on X.

> Spin“ -structure is a Pin™ (2)-variant of Spin®-str. defined by
M.Furuta, whose complex structure is “twisted along [".
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» The moduli space of Pin™ (2)-monopoles is compact.
—— Bauer-Furuta theory can be developed.

Furuta's theorem
Let X be a closed ori. smooth spin 4-manifold with indefinite () x .

bo(x) > -SR]

Theorem 2(N.)

Let X be a closed connected ori. smooth 4-manifold. For any
nontrivial Z-bundle I — X s.t. wi(\)? = wa(X), where A = [ ® R,

_ sign(X)

by (X;A) > T

where by (X;\) = rank HT(X; \).
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Recall fundamental theorems.
1. [Rohlin] X*: closed spin = sign(X) = 0 mod 16.
2. [Donaldson| Definite = diagonal.
3. [Furuta] The 10/8-inequality

3" [Furuta-Kametani] The strong 10/8-inequality in the case
when b; > 0.

Corollary 1(N.)

3 Nonsmoothable closed indefinite spin 4-manifolds satisfying
> sign(X) =0 mod 16,
> the strong 10/8-inequality.
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Proof

> Let M be T* or T? x S?. = Qps = 3H, Qrov g2 = H.

» If I’ — M is any nontrivial Z-bundle,
= bo(M;1') =0 & w1 (I' @ R)? = 0.

» Let V be a topological 4-manifold s.t. mV =1, Qy is even
and definite, sign(V') = 0 mod 16. (= V is spin.)

» Choose a large k s.t. X = V#EkM satisfies the strong
10/8-inequality.

> Let l:=Z#kl — X. = Qx1=Qv, w1 (1 ®R)2 = 0.

» Suppose X is smooth. By Theorem 1,
Qx,; = Qv ~ diagonal. Contradiction.

Remark
Similar examples can be constructed by using Theorem 2.
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Non-spin manifolds

10/8-conjecture

Every non-spin closed smooth 4-manifold X with even form

satisfies 10
(X)) > | sign(X)|.

[Bohr,’02],[Lee-Li,"00]

If the 2-torsion part of H{(X;Z) is Z/2" or Z./2 & Z./2

= the 10/8-conjecture is true.

Corollary 2(N.)

4 Nonsmoothable non-spin 4-manifolds X with even form s.t.
> the 2-torsion part of Hy(X;Z) 2 7Z/2,

> the 10/8-conjecture is true.
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The outline of the proof of Theorem 1

» The proof of Theorem 1 is almost parallel to the SW-proof of
Donaldson’s theorem.

» By using Pin™ (2)-monopole moduli, we will prove every
characteristic element w of () x ; satisfies
|w?| > rank H?(X;1). « (The dim. of the moduli) <0

» Then Elkies’ theorem implies ) x; should be standard.

- An element w in a unimodular lattice L is called characteristic
ifw-v=v-v mod 2 for Vv € L.

[Elkies '95]
If every characteristic element w € L satisfies |w?| > rank L, then
L = diagonal.
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Pin™ (2)-monopole equations

Pin™ (2) = (U(1),5) = U(1) ujU(1) C Sp(1) C H.
The two-to-one homomorphism Pin™ (2) — O(2) is defined by

zeU(l) C Pin™(2) — 22 € U(1) C O(2),
. 1 0
77 \o0 1)
Definition Spin®-(n) := Spin(n) x 413 Pin™(2).
1 — {+1} — Spin“~(n) — SO(n) x O(2) — 1.

Cf. Spin“(n) = Spin(n) x4y U(1).
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Spin“--structures

» Let X be an oriented n-manifold.

» Fix a Riemannian metric.
— F(X): The SO(n)-frame bundle.

» Suppose an O(2)-bundle F over X is given.

Spin“~-structure
A Spin“--structure on (X, E) is given by (P, T) s.t.
» P: a Spin“(n)-bundle over X,

» 7 P/{£1} S F(X) xx E.

Proposition(Furuta '08)
3 Spin®--structure on (X, E) & wy(X) = wa(E) + w1 (E)?.

Nobuhiro Nakamura Pin~ (2)-monopole equations and intersection forms




-structures
Pin™ (2)-monopole equations Pin™ (2)-monopole equations

Spin®

The case whenn =4

Spin®~ (4)-modules Hy, H, and H_

» Hp, H,, H_ = H as vector spaces.
» The actions of [¢y,q_,u] € Spin°~(4) are given by

Hr 3 v qrugs' — P Xgpipe ) Hp £ TX
Hi 3¢ qedu ' — P Xgpipe— gy He =1 57

ST are the positive/negative spinor bundles.
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The Clifford multiplication Define the Spin®~ (4)-equivariant map

PO - Hyp x H-I— - H_,(U,¢> = @¢'
— p: QY(X) xT(ST) = T(S7).

Twisted complex version
> Spin“~(4) = Spin(n) X (41 Pin™ (2) has two components.
> Let Gy C Spin“ (4) be the identity component.

> Let : Spin®~(4) — Spin®~(4)/Gp = {£1} be the projection.
—s Px. R=detE =: \

» Let Spin®~(4) act on C by complex conjugation via «.

» Define the Spin®~ (4)-equivariant map,

po: Hr g C x Hy — H_, (v ® a, ¢) — voa.
— p: QR @ iN) x T(ST) - T'(S7).
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Q . C
Spin

Dirac operator

An O(2)-connection A on E + Levi-Civita connection
— A Spin°~ (4)-connection A on P
— Dirac operator

Dy:T(ST) = T(S7).
If A’ is another O(2)-connection = a = A — A" € QL(i)).

Datad = Dad + p(a).
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Quadratic map
Let x = [q+,q—,u] € Spin®~(4) act on im H by

imH > v e(z)qvgt — (P X gpinc- (4) IM H) 2 QT (iX).
Then ¢ € H > ¢i¢ € imH is Spin®~ (4)-equivariant. We obtain
g: T(ST) — QT (iN).

Pin~ (2)-monopole equations
Let A be the space of O(2)-connections on F.

For (A,¢) € Ax T'(ST), Pin~ (2)-monopole equations are defined
by

Dag =0,
Fi=q(9).
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Relation to Seiberg-Witten theory

> Spin“~(4) = Spin(4) X 413 Pin™(2) has two component.
> The identity compo. G = Spin(4) x4y U(1) = Spin“(4).
Spin‘- (4)/Go = Z,/2.

v

v

Let (P, 7) be a Spin“~-structure on (X, F).
» X = P/Gy — X is a double covering s.t.

A= X X{il}RgdetE.

» P — X isa Gy = Spin°(4)-bundle.
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Y . c
Spin

lSpinc— (4) lG():SpinC (4)
X — P/GO = X ¥ L

2:1
» 12 X — X, the covering transformation.
> J=[1,1,5] € (Sp(1) x Sp(1) x Pin"(2))/{£1} = Spin®~ (4)
» The Spin®structure ¢ on X is induced from P — X.

» The J-action induces antilinear involutions I on the spinor
bundles and the determinant line bundle of c.

Pin~(2)-monopole theory on X = I-invariant SW theory on X.
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Gauge transformation group

G :={Spin°~ (4)-equiv. diffeos of P covering the id. of P/ Pin~(2)}
TP Xaq Pin™(2)),

where “ad” is the adjoint action on Pin™(2) by Pin~ (2)-compo.
of Spin“~(4) = Spin(4) x 41y Pin™ (2).

g€ Gactson (A,¢) € AxT(ST) by g(A,¢) = (A—29"dg,g¢).

Cf. In the SW-case, Gsyw = Map(X, S1).

The moduli space M = { solutions }/G.
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What is G = I'(P x,q Pin~(2))?
> Pin=(2) = U(1) U U(1).

For u,z € U(1), ad,(u) = zuz = u,
ad;.(u) = jzuz(—j) = u,
ad, (ju) = 2*ju,

ad;, (ju) = 2°ja.

» Note Gy = I'(X x+1) U(1)), where {£1} acts on U(1) by
complex conjugation.

Define the involution I on Ggy = Map(X; S') by Ig = ¥ g, where
t: X — X the covering transformation. = |Gy = (Gsw)’.

Nobuhiro Nakamura Pin~ (2)-monopole equations and intersection forms




-structures
Pin™ (2)-monopole equations Pin™ (2)-monopole equations

Q . C
Spin

Proposition Gy =T'(P x,qj U(1)) # 0 < ¢ (F) =0,

» ¢1(E) is the Euler class considered in H?(X;1), where [ is the
sub-Z-bundle of A = det L.
Froyshov calls ¢1(F) the twisted 1st Chern class.

» The iso. classes of O(2)-bundle E over X s.t. det = X are
classified by ¢ (E) € H?(X;1). « Proved by Froyshov.

> 6(E) =0 EXR@ A
> Since ad. (ju) = 2%ju & ad;,(ju) = z%ja,

P x,q47U(1) 2 S(E) : The bundle of unit vectors of F.
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The moduli space

M = { solutions }/G,
M = { solutions }/Gy.

Noteél(E)#Oz>9290 = M = M.
Proposition

» M is compact.

» The virtual dimension of M:

d = ~(e1(E)* — sign(X)) — (bo(X31) — by (X51) + by (X; 1)),

If [ is nontrivial & X connected = by(X;() = 0.
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Reducibles

> Recall g(A, ¢) = (A —2g~"dg, g9).
> If ¢ £ 0 = G-action is free.

> The stabilizer of (A4,0) is {1} C Gy = I'(X x 11y U(1)),
unless E =R @ A and A is flat (= The stabilizer = Z/4).

» The elements of the form (A, 0) are called reducibles.
Cf. In the SW-case, the stabilizer of (A,0) is S* C Map(X, S?).

» In general, { reducible solutions } /Gy = TP (XD < M.

Nobuhiro Nakamura Pin~ (2)-monopole equations and intersection forms

Proof of Theorem 1
Proof of Theorem 2
Proof of Theorem 1 & 2

Proof of Theorem 1
Theorem 1.(N.)

» X: a closed connected ori. smooth 4-manifold.
» [ — X: a nontrivial Z-bdl. s.t. w1(\)? =0, where A\ = [ @ R.

If Qx is definite = Q) x; ~ diagonal.

Outline of the proof

» We will prove every characteristic element w of ) x; satisfies
lw?| > rank H?(X;1),
by proving for every F,
d = dim My < 0.
> Then Elkies’ theorem implies () x; should be standard.
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The structure of My when b, (X;1) =0

)
» Suppose a Spin“-structure (P, 7) on X is given.

» For simplicity, assume b (X, 1) = 0.
= 3! reducible class pg € M.

» Perturb the Pin™(2)-monopole equations by adding
n € QT (i)) to the curvature equation. — Ff = q(¢) + .

» For generic n, My \ {po} is a d-dimensional manifold.
» Fix a small neighborhood N (pg) of {po}.
= N(pg) 2 R%/{£1} = a cone of RP?"!

Then Mg := Mg\ N(pg) is a compact d-manifold &
oMy = RP4L,
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> Let B* = (A x (T(ST)\ {0}) /Go.

Proposition B* = RP> x Tb1(X50),

Cf. In the SW-case, By ~ CP™ xT"(X). B* = (By,,)!
Lemma

If by (X50) =0 & bi(X;1) =0 = d = dim Mg < 0.
Proof

» Suppose d > 0.
» Recall M, is a compact d-manifold s.t. My = RP41.
» 3C € H¥Y(B*;Z/2) = H¥1(RP*;Z/2) s.t.

(C, [0My]) # 0. = Contradiction.
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» Note sign(X) = b, (X;1) — b_(X;!) for any Z-bundle [.
» By Lemma, if [ is nontrivial & b, (X;1) =0 & b1(X;1) =0,

d 21(51(E>2 — sign(X)) — (bo(X;1) — b1 (X;1) + by (X51))
= (@) + ba(X:1)) <0,

Note ¢1(F)? < 0if by (X;1) = 0.

» Therefore, for any E which admits a Spin“~-structure,
bo(X;1) < |E1(E)?|.
By varying E, we can prove every characteristic element w satisfies

bo(X;1) < |Jw?|.
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Recall

» FE admits a Spin®~-structure
= ’UJQ(X) = ’UJQ(E> + wl(E)2 = wg(E) + wl()\)2,
where A =det £ =1l ® R.
» ¢1(E) € H*(X;1) classifies E s.t. det E =l ® R.

Note that 0 — [ 3 [ — Z./2 — 0 induces the mod-2-reduction
map []o: H?(X;l) — H*(X;Z/2) & [¢1(E)]2 = wa(E). We have,

Theorem
Suppose w1 (\)2 = 0. For every C € H*(X;1) s.t.
w2 (X) = [Cla + w1 (N)? = [C]a,

C?] > ba(X;31).
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Lemma
For every characteristic element ¢ of Q) x;, 3 a torsion
6 € H*(X;l) s.t. [c+ d]a = wo(X).

Then, for V characteristic element ¢ of Q) x
] = [(c+8)°| > ba(X; ).

By Elkies’ theorem, () x; ~diagonal.
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The outline of the proof of Theorem 2
» Suppose wi(A\)? = wo(X). Let E=R D ).
= I Spin®-structure on (X, F). = G; # ().
» For simplicity, assume by (X;1) = 0.
» Then, by taking finite dimensional approximation of the
monopole map, we obtain a proper Z4-equivariant map

f:R™ @ CMF - R g CY,

where
» R is R on which Z4 acts via Zy — Zs = {£1} ~ R,
» C; is C on which Z,4 acts by multiplication of 7,
» k= —sign(X)/8, b =">b4(X;\), m,n are some integers.

Here, Z4 is generated by the constant section

je€ G =T(X xi£13 7U1)).

Proof of Theorem 1
Proof of Theorem 2
Proof of Theorem 1 & 2

» By using the techniques of equivariant homotopy theory, e.g.,
tom Dieck’s character formula, we can see that any proper
Z.4-map of the form,

f:R™ @ CMF - R g CY,

should satisfy b > k.

» Thatis,

1
bi(X;N) > ~3 sign(X).
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Finite dimensional approximation

» Take a flat connection Ag on R & A.

Pin™(2)-monopole map

p: QEN) @ T(ST) — (@ QN (EN) @ T(S™) = W,
(a,¢) — (da, Fa, + d*a+ q(9), DA0+CL¢)'

> Let i(a,¢) := (d*a,d"a, Da,¢) be the linear part of u.
— [ is Fredholm.
» ¢ = u — [: quadratic, compact.
» Choose a finite dim. subspace U C W s.t. dimU > 1,
U D (iml)*
Let V :=1"1(U) & p: W — U be the L?-projection.
» Define f: V —Uby|f =101+ pc.|— [: proper, Zs-equiv.
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Remarks for future researches

» Pin™ (2)-monopole invariants
» Calculation, gluing formula, stable cohomotopy refinements
» Orbifolds with surface singularities

» Exotic involutions Cf. [Fintushel-Stern-Snukujian]
» Smooth inequivalent but topologically equivalent embedded
surfaces Cf. [H.J.Kim-Ruberman]

» When X: symplectic & [*w = —w,
Pin™(2)-monopole inv. — real Gromov-Witten inv.

Cf. [Tian-Wang]
» Pin~ (2)-monopole Floer theory?
Pin™ (2) Heegaard Floer theory?

> “Witten conjecture” for Pin™ (2)-monopole invariants?
» [Feehan-Leness] SW = Donaldson

Pin™ (2)-monopole inv. = 777
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