Pin $^{-}$(2)-monopole theory I
 Intersection forms with local coefficients

Nobuhiro Nakamura

Osaka Medical College
Dec 12, 2016

- $\operatorname{Pin}^{-}(2)=\mathrm{U}(1) \cup j \mathrm{U}(1) \subset \mathrm{Sp}(1) \subset \mathbb{H}$
- $\operatorname{Pin}^{-}(2)$-monopole equations are a twisted version of the Seiberg-Witten (U(1)-monopole) equations.

Applications of SW equations

- Intersection forms
- Diagonalization theorem
- The $10 / 8$ inequality for spin [Furuta]
- SW invariants
- Exotic structures
- Adjunction inequalities [Kronheimer-Mrowka] et al.
- SW=GW [Taubes]
- Calculation of the Yamabe invariants [LeBrun] et al
- stable cohomotopy invariants [Bauer-Furuta]
- $\operatorname{Pin}^{-}(2)=\mathrm{U}(1) \cup j \mathrm{U}(1) \subset \mathrm{Sp}(1) \subset \mathbb{H}$
- $\operatorname{Pin}^{-}(2)$-monopole equations are a twisted version of the Seiberg-Witten (U(1)-monopole) equations.

Applications of $\mathrm{Pin}^{-}(2)$-monopole equations

- Intersection forms with local coefficients
- Diagonalization theorem in local coefficients
- 10/8-type inequality (for non-spin)
- $\mathrm{Pin}^{-}(2)$-monopole invariants
- Exotic structures
- Adjunction inequalities
- Calculation of the Yamabe invariants (j/w M. Ishida \& S. Matsuo)
- stable cohomotopy invariants

Today

- Intersection forms with local coefficients
- Diagonalization theorem in local coefficients
- 10/8-type inequality (for non-spin)
- \mathbb{Z}_{2}-Froyshov invariants \& 4-manifolds with boundary

Next talk

- $\mathrm{Pin}^{-}(2)$-monopole invariants
- stable cohomotopy invariants

Intersection forms with local coefficients

- X : closed oriented 4-manifold with double cover $\tilde{X} \rightarrow X$
- $\ell:=\tilde{X} \times_{\{ \pm 1\}} \mathbb{Z}$, a \mathbb{Z}-bundle over X. $\longrightarrow H^{*}(X ; \ell): \ell$-coefficient cohomology.
- Note $\ell \otimes \ell=\mathbb{Z}$. The cup product

$$
\cup: H^{2}(X ; \ell) \times H^{2}(X ; \ell) \rightarrow H^{4}(X ; \mathbb{Z}) \cong \mathbb{Z}
$$

induces the intersection form with local coefficient

$$
Q_{X, \ell}: H^{2}(X ; \ell) / \text { torsion } \times H^{2}(X ; \ell) / \text { torsion } \rightarrow \mathbb{Z}
$$

- $Q_{X, \ell}$ is a symmetric bilinear unimodular form.

Theorem [Froyshov, 2012]

- X: a closed connected oriented smooth 4-manifold s.t.

$$
\left\{\begin{array}{c}
H^{2}(X ; \ell) \text { contains no element of order } 4 \tag{1}\\
b^{+}(X)+\operatorname{dim}_{\mathbb{Z} / 2}\left(\operatorname{tor} H_{1}(X ; \mathbb{Z}) \otimes \mathbb{Z} / 2\right) \leq 2 .
\end{array}\right.
$$

- $l \rightarrow X$: a nontrivial \mathbb{Z}-bundle.

$$
\text { If } Q_{X, \ell} \text { is definite } \Rightarrow Q_{X, \ell} \sim \text { diagonal. }
$$

- The original form of Froyshov's theorem is:

$$
\begin{aligned}
& \text { If } X \text { with } \partial X=Y: \mathbb{Z} H S^{3} \text { satisfies }(1) \\
& \quad \& Q_{X, \ell} \text { is nonstandard definite } \\
& \Rightarrow \delta_{0}: H F^{4}(Y ; \mathbb{Z} / 2) \rightarrow \mathbb{Z} / 2 \text { is non-zero. }
\end{aligned}
$$

- $Y=S^{3} \Rightarrow H F^{4}(Y ; \mathbb{Z} / 2)=0 \Rightarrow$ The above result.
- The proof uses $\mathrm{SO}(3)$-Yang-Mills theory on a $\mathrm{SO}(3)$-bundle V.
- Twisted reducibles (stabilizer $\cong\{ \pm 1\}$) play an important role. V is reduced to $\lambda \oplus E$, where E is an $\mathrm{O}(2)$-bundle, $\lambda=\operatorname{det} E$: a nontrivial \mathbb{R}-bundle.

Cf [Fintushel-Stern'84]'s proof of Donaldson's theorem also used $\mathrm{SO}(3)$-Yang-Mills.
\longrightarrow Abelian reducibles (stabilizer $\cong \mathrm{U}(1)$)
V is reduced to $\mathbb{R} \oplus L$, where L is a $\mathrm{U}(1)$-bundle.

Theorem 1.(N. 2013)

- X : a closed connected ori. smooth 4-manifold.
- $\ell \rightarrow X$: a nontrivial \mathbb{Z}-bdl. s.t. $w_{1}(\ell \otimes \mathbb{R})^{2}=0$.

$$
\text { If } Q_{X, \ell} \text { is definite } \Rightarrow Q_{X, \ell} \sim \text { diagonal. }
$$

Cf. Froyshov's theorem

- X : s.t. $\left\{\begin{array}{l}H^{2}(X ; \ell) \text { contains no element of order } 4 \\ b^{+}(X)+\operatorname{dim}_{\mathbb{Z} / 2}\left(\operatorname{tor} H_{1}(X ; \mathbb{Z}) \otimes \mathbb{Z} / 2\right) \leq 2 .\end{array}\right.$
- $\ell \rightarrow X$: a nontrivial \mathbb{Z}-bundle.

If $Q_{X, \ell}$ is definite $\Rightarrow Q_{X, \ell} \sim$ diagonal.

Theorem 1.(N. 2013)

- X : a closed connected ori. smooth 4-manifold.
- $\ell \rightarrow X$: a nontrivial \mathbb{Z}-bdl. s.t. $w_{1}(\ell \otimes \mathbb{R})^{2}=0$.

$$
\text { If } Q_{X, \ell} \text { is definite } \Rightarrow Q_{X, \ell} \sim \text { diagonal. }
$$

- The proof uses $\mathrm{Pin}^{-}(2)$-monopole equations.
- $\mathrm{Pin}^{-}(2)$-monopole eqns are defined on a $\mathrm{Spin}^{c_{-}}$structure.
- Spin $^{{ }^{c-}}$ structure is a $\mathrm{Pin}^{-}(2)$-variant of Spin^{c}-structure whose complex structure is "twisted along ℓ ".
- The moduli space of $\mathrm{Pin}^{-}(2)$-monopoles is compact. \longrightarrow Bauer-Furuta theory can be developed.

Furuta's theorem
Let X be a closed ori. smooth spin 4-manifold with indefinite Q_{X}.

$$
b_{2}(X) \geq \frac{10}{8}|\operatorname{sign}(X)|+2
$$

Theorem 2(N.'13, Furuta)
Let X be a closed connected ori. smooth 4 -manifold. For any nontrivial \mathbb{Z}-bundle $\ell \rightarrow X$ s.t. $w_{1}(\ell \otimes \mathbb{R})^{2}=w_{2}(X)$.

$$
b_{2}^{\ell}(X) \geq \frac{10}{8}|\operatorname{sign}(X)|+2
$$

where $b_{2}^{\ell}(X)=\operatorname{rank} H_{2}(X ; \ell)$.

Pin ${ }^{-}(2)$-monopole equations

- Seiberg-Witten equations are defined on a Spin^{c}-structure.

$$
\operatorname{Spin}^{c}(4)=\operatorname{Spin}(4) \times_{\{ \pm 1\}} U(1)
$$

- $\mathrm{Pin}^{-}(2)$-monopole eqns are defined on a Spin^{c-}-structure.

$$
\operatorname{Spin}^{c_{-}}(4)=\operatorname{Spin}(4) \times_{\{ \pm 1\}} \operatorname{Pin}^{-}(2)
$$

Spin $^{c_{-}}(4)$

$$
\operatorname{Pin}^{-}(2)=\langle\mathrm{U}(1), j\rangle=\mathrm{U}(1) \cup j \mathrm{U}(1) \subset \mathrm{Sp}(1) \subset \mathbb{H} .
$$

Two-to-one homomorphism $\mathrm{Pin}^{-}(2) \rightarrow \mathrm{O}(2)$

$$
\begin{aligned}
z \in \mathrm{U}(1) \subset \mathrm{Pin}^{-}(2) & \mapsto z^{2} \in \mathrm{U}(1) \cong \mathrm{SO}(2) \subset \mathrm{O}(2) \\
j & \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{aligned}
$$

Definition $\operatorname{Spin}^{c_{-}}(4):=\operatorname{Spin}(4) \times_{\{ \pm 1\}} \operatorname{Pin}^{-}(2)$.

- $\operatorname{Spin}^{c_{-}}(4) / \operatorname{Pin}^{-}(2)=\operatorname{Spin}(4) /\{ \pm 1\}=\operatorname{SO}(4)$
- $\operatorname{Spin}^{c^{-}}(4) / \operatorname{Spin}(4)=O(2)$
- The id. compo. of $\operatorname{Spin}^{c_{-}}(4)=\operatorname{Spin}(4) \times_{\{ \pm 1\}} U(1)$

$$
=\operatorname{Spin}^{c}(4)
$$

$$
\operatorname{Spin}^{c_{-}}(4) / \operatorname{Spin}^{c}(4)=\{ \pm 1\}
$$

Spin ${ }^{c-}$-structures

- X : an oriented Riemannian 4-manifold.
$\longrightarrow \operatorname{Fr}(X)$: The SO(4)-frame bundle.
- $\tilde{X} \xrightarrow{2: 1} X:$ (nontrivial) double covering, $\ell:=\tilde{X} \times_{\{ \pm 1\}} \mathbb{Z}$

- P : a $\operatorname{Spin}^{c-}(4)$-bundle over X,
- $P / \operatorname{Spin}^{c}(4) \xrightarrow{\cong} \tilde{X}$
- $P / \operatorname{Pin}^{-}(2) \stackrel{\cong}{\leftrightarrows} \operatorname{Fr}(X)$.
- $E=P / \operatorname{Spin}(4) \xrightarrow{\mathrm{O}(2)} X$: characteristic $\mathrm{O}(2)$-bundle. $\longrightarrow \ell$-coefficient Euler class $\tilde{c}_{1}(E) \in H^{2}(X ; \ell)$.

$$
\operatorname{Spin}^{c-(4)} \underbrace{\operatorname{Spin}^{c}(4)}_{2 / \operatorname{Spin}^{c}(4)}=\tilde{X} \curvearrowleft \iota, \iota^{2}=\mathrm{id}_{\tilde{X}}
$$

- $P \xrightarrow{\operatorname{Spin}^{c}(4)} \tilde{X}$ defines a Spin ${ }^{c}$-structure $\tilde{\mathfrak{s}}$ on \tilde{X}
- $J=[1, j] \in \operatorname{Spin}(4) \times_{\{ \pm 1\}} \operatorname{Pin}^{-}(2)=\operatorname{Spin}^{c_{-}}(4) \Rightarrow J$ covers ι
- Involution I on the spinor bundles $\tilde{S}^{ \pm}$of $\tilde{\mathfrak{s}}$:

$$
\tilde{S}^{ \pm}=P \times_{\operatorname{Spin}^{c}(4)} \mathbb{H}_{ \pm} \curvearrowleft[J, j]=: I
$$

$\Rightarrow I^{2}=1 \& I$ is antilinear.
$\Rightarrow S^{ \pm}=\tilde{S}^{ \pm} / I$ are the spinor bundles for the Spin ${ }^{c_{-}-\text {str. } \mathfrak{s}}$ $S^{ \pm}$are not complex bundles.

- Twisted Clifford multiplication

$$
\rho: T^{*} X \otimes(\ell \otimes \sqrt{-1} \mathbb{R}) \rightarrow \operatorname{End}\left(S^{+} \oplus S^{-}\right)
$$

- An $\mathrm{O}(2)$-connection A on $E+$ Levi-Civita \Rightarrow Dirac operator

$$
D_{A}: \Gamma\left(S^{+}\right) \rightarrow \Gamma\left(S^{-}\right)
$$

- Weitzenböck formula

$$
D_{A}^{2} \Phi=\nabla_{A}^{*} \nabla_{A} \Phi+\frac{s_{g}}{4} \Phi+\frac{\rho\left(F_{A}^{+}\right)}{2} \Phi
$$

$\mathrm{Pin}^{-}(2)$-monopole equations

$$
\left\{\begin{aligned}
D_{A} \Phi & =0 \\
\rho\left(F_{A}^{+}\right) & =q(\Phi),
\end{aligned}\right.
$$

where

- A: $\mathrm{O}(2)$-connection on $E \& \Phi \in \Gamma\left(S^{+}\right)$
- $F_{A}^{+} \in \Omega^{+}(\ell \otimes \sqrt{-1} \mathbb{R})$
- $q(\Phi)="\left(\Phi^{*} \otimes \Phi\right)-\frac{1}{2}|\Phi|^{2} \mathrm{id} " \in \operatorname{End}\left(S^{+}\right)$

Remark
$\operatorname{Pin}^{-}(2)$-monopole on $X=I$-invariant Seiberg-Witten on \tilde{X}

Gauge symmetry

$$
\begin{aligned}
\mathcal{G}_{\text {Pin }} & =\Gamma\left(\tilde{X} \times_{\{ \pm 1\}} \mathrm{U}(1)\right) \\
& =\left\{f \in \operatorname{Map}(\tilde{X}, \mathrm{U}(1)) \mid f(\iota x)=f(x)^{-1}\right\}
\end{aligned}
$$

where $\{ \pm 1\} \curvearrowright \mathrm{U}(1)$ by $z \mapsto z^{-1}$.
Cf. Ordinary SW (U(1)) case

$$
\mathcal{G}_{\mathrm{U}(1)}=\operatorname{Map}(X, \mathrm{U}(1))
$$

Moduli spaces

$\mathcal{M}_{\text {Pin }}=\{$ solutions $\} / \mathcal{G}_{\text {Pin }} \subset\left(\mathcal{A}_{E} \times \Gamma\left(S^{+}\right)\right) / \mathcal{G}_{\text {Pin }}$ where $\mathcal{A}_{E}=$ the space of $\mathrm{O}(2)$-connections on E

Proposition

- $\mathcal{M}_{\text {Pin }}$ is compact.
- The virtual dimension of $\mathcal{M}_{\text {Pin }}$:

$$
d=\frac{1}{4}\left(\tilde{c}_{1}(E)^{2}-\operatorname{sign}(X)\right)-\left(b_{0}^{l}-b_{1}^{l}+b_{+}^{l}\right) .
$$

where $b_{\bullet}^{l}=\operatorname{rank} H_{\bullet}(X ; l)$.

- If l is nontrivial \& X connected $\Rightarrow b_{0}^{l}=0$.

Reducibles

- Irreducible: $(A, \Phi), \Phi \not \equiv 0 \leftarrow \mathcal{G}_{\text {Pin } \text {-action is free. }}$
- reducible: $(A, \Phi \equiv 0) \leftarrow$ The stabilizer is $\{ \pm 1\}$
- $\{$ reducible solutions $\} / \mathcal{G}_{\text {Pin }} \cong T^{b_{1}^{l}} \subset \mathcal{M}_{\text {Pin }}$.

Key difference

Ordinary SW(U(1)) case

- Reducible \rightarrow The stabilizer $=\mathrm{U}(1)$.

$$
\begin{aligned}
\mathcal{M}_{\mathrm{U}(1)} \backslash\{\text { reducibles }\} & \subset\left(\mathcal{A}_{\mathrm{U}(1)} \times\left(\Gamma\left(S^{+}\right) \backslash\{0\}\right)\right) / \mathcal{G}_{\mathrm{U}(1)} \simeq B \mathcal{G}_{\mathrm{U}(1)} \\
& \simeq T^{b_{1}} \times \mathbb{C P}^{\infty}
\end{aligned}
$$

Pin ${ }^{-}$(2)-monopole case

- Reducible \rightarrow The stabilizer $=\{ \pm 1\}$.

$$
\begin{aligned}
\mathcal{M}_{\text {Pin }} \backslash\{\text { reducibles }\} & \subset\left(\mathcal{A} \times\left(\Gamma\left(S^{+}\right) \backslash\{0\}\right)\right) / \mathcal{G}_{\text {Pin }} \simeq B \mathcal{G}_{\text {Pin }} \\
& \simeq T^{b_{1}^{l}} \times \mathbb{R} \mathrm{P}^{\infty}
\end{aligned}
$$

Proof of Theorem 1

Recall

Theorem 1.

- X : a closed connected ori. smooth 4-manifold.
- $\ell \rightarrow X$: a nontrivial \mathbb{Z}-bundle s.t. $w_{1}(\ell \otimes \mathbb{R})^{2}=0$.

$$
\text { If } Q_{X, \ell} \text { is definite } \Rightarrow Q_{X, \ell} \sim \text { diagonal. }
$$

- For simplicity, assume $b_{1}^{l}=0$.

Lemma 1
\forall characteristic elements w of $Q_{X, l}$,

$$
0 \geq-\left|w^{2}\right|+b_{2}^{l}
$$

An element w in a unimodular lattice L is called characteristic if $w \cdot v \equiv v \cdot v \bmod 2$ for $\forall v \in L$.

Lemma $1 \&\left[\right.$ Elkies '95] $\Rightarrow Q_{X, l} \sim$ diagonal.

Lemma 2
If $w_{1}(l \otimes \mathbb{R})^{2}=0$
$\Rightarrow \forall$ characteristic element $w, \exists \operatorname{Spin}^{c_{-}-\text {str. s.t. }} \tilde{c}_{1}(E)=w$.
Lemma 3
If $b_{+}^{l}=b_{1}^{l}=0 \Rightarrow \operatorname{dim} \mathcal{M}_{\text {Pin }} \leq 0$ for $\forall \operatorname{Spin}^{c_{-}}$-str.
Lemma 2 \& $3 \Rightarrow$ Lemma 1

$$
\begin{aligned}
0 \geq \operatorname{dim} \mathcal{M}_{\text {Pin }} & =\frac{1}{4}\left(\tilde{c}_{1}(E)^{2}-\operatorname{sign}(X)\right)-\left(b_{0}^{l}-b_{1}^{l}+b_{+}^{l}\right) \\
& =\frac{1}{4}\left(-\left|w^{2}\right|+b_{2}^{l}\right)
\end{aligned}
$$

The structure of $\mathcal{M}_{\text {Pin }}$ when $b_{+}(X ; l)=0$

- $b_{1}(X, l)=0 \Rightarrow \exists^{1}$ reducible class $\rho_{0} \in \mathcal{M}_{\text {Pin }}$.
- Perturb the $\operatorname{Pin}^{-}(2)$-monopole equations by adding $\eta \in \Omega^{+}(i \lambda)$ to the curvature equation. $\rightarrow F_{A}^{+}=q(\phi)+\eta$.
- For generic $\eta, \mathcal{M}_{\text {Pin }} \backslash\left\{\rho_{0}\right\}$ is a d-dimensional manifold.
- Fix a small neighborhood $N\left(\rho_{0}\right)$ of $\left\{\rho_{0}\right\}$.
$\Rightarrow N\left(\rho_{0}\right) \cong \mathbb{R}^{d} /\{ \pm 1\}=$ a cone of $\mathbb{R P}^{d-1}$
Then $\overline{\mathcal{M}}_{\text {Pin }}:=\overline{\mathcal{M}}$ Pin $^{\text {P }}$ ($\left.\rho_{0}\right)$ is a compact d-manifold \& $\partial \overline{\mathcal{M}}_{\mathrm{Pin}}=\mathbb{R} \mathrm{P}^{d-1}$.

- Note $\overline{\mathcal{M}}_{\text {Pin }} \subset\left(\mathcal{A} \times\left(\Gamma\left(S^{+}\right) \backslash\{0\}\right)\right) / \mathcal{G}=: \mathcal{B}^{*}$.
- Recall $\mathcal{B}^{*} \underset{\text { h.e. }}{\simeq} T^{b_{1}(X ; l)} \times \mathbb{R P}^{\infty}$.

Lemma 3
If $b_{+}^{l}=0 \& b_{1}^{l}=0 \Rightarrow d=\operatorname{dim} \mathcal{M}_{\text {Pin }} \leq 0$.
Proof

- Suppose $d>0$.
- Recall $\overline{\mathcal{M}}_{\text {Pin }}$ is a compact d-manifold s.t. $\partial \overline{\mathcal{M}}_{\text {Pin }}=\mathbb{R} \mathrm{P}^{d-1}$.
- $\exists C \in H^{d-1}\left(\mathcal{B}^{*} ; \mathbb{Z} / 2\right) \cong H^{d-1}\left(\mathbb{R} \mathrm{P}^{\infty} ; \mathbb{Z} / 2\right)$ s.t. $\left\langle C,\left[\partial \overline{\mathcal{M}}_{\mathrm{Pin}}\right]\right\rangle \neq 0 . \Rightarrow$ Contradiction.

Another proof of Lemma 3

Monopole map

- For simplicity, we assume $b_{1}^{\ell}=\operatorname{dim} H_{1}(X ; \ell)=0$.
- Fix a reference $\mathrm{O}(2)$-connection A on E

$$
\begin{aligned}
\mu: \Gamma\left(S^{+}\right) \times \Omega(\ell \otimes i \mathbb{R}) & \rightarrow \Gamma\left(S^{-}\right) \times\left(\Omega^{+} \oplus \Omega^{0}\right)(\ell \otimes i \mathbb{R}) \\
(a, \phi) & \mapsto\left(D_{A+a} \phi, F_{A+a}^{+}-q(\phi), d^{*} a\right)
\end{aligned}
$$

- μ is $\{ \pm 1\}$-equivariant
- $\mu^{-1}($ ball $) \subset$ ball

Finite dimensional approximation [Furuta,'95]

- Decompose $\mu=\mathcal{D}+\mathcal{Q}$ as \mathcal{D} : linear $\& \mathcal{Q}$: quadratic
- Fix $\lambda \gg 1$.

$$
\begin{gathered}
V_{\lambda}=\operatorname{Span}\binom{\text { eigenspaces of } \mathcal{D}^{*} \mathcal{D}}{\text { eigenvalues }<\lambda} \\
W_{\lambda}=\operatorname{Span}\binom{\text { eigenspaces of } \mathcal{D} \mathcal{D}^{*}}{\text { eigenvalues }<\lambda}
\end{gathered}
$$

- $p_{\lambda}: \Gamma\left(S^{-}\right) \times\left(\Omega^{+} \oplus \Omega^{0}\right)(\ell \otimes i \mathbb{R}) \rightarrow W_{\lambda}, L^{2}$-projection
- Finite dim approx. $f=\mathcal{D}+p_{\lambda} \mathcal{Q}: V_{\lambda} \rightarrow W_{\lambda}$
- f is $\{ \pm 1\}$-equivariant, proper
- f has the following form:

$$
\begin{aligned}
& f: \tilde{\mathbb{R}}^{x+a} \oplus \mathbb{R}^{y} \rightarrow \tilde{\mathbb{R}}^{x} \oplus \mathbb{R}^{y+b}, \quad a=\operatorname{ind}_{\mathbb{R}} D_{A}, b=b_{+}^{\ell}(X) \\
& \\
& \{ \pm 1\} \text { acts on }\left\{\begin{array}{l}
\tilde{\mathbb{R}} \text { by multiplication } \\
\mathbb{R} \text { trivially }
\end{array}\right.
\end{aligned}
$$

$\tilde{\mathbb{R}}^{\bullet}$: spinor part, \mathbb{R}^{\bullet} : form part

- [Fact] $\left.f\right|_{\{0\} \oplus \mathbb{R}^{y}}$ is a linear inclusion
- Suppose $b=b_{+}^{\ell}(X)=0$. Consider the diagram

$$
\begin{array}{ccc}
\left(\tilde{\mathbb{R}}^{x+a} \oplus \mathbb{R}^{y}\right)^{+} & \xrightarrow{f^{+}}\left(\begin{array}{c}
\tilde{\mathbb{R}}^{x} \oplus \mathbb{R}^{y}
\end{array}\right)^{+} \\
i_{1} \uparrow & & i_{2} \uparrow \\
\left(\mathbb{R}^{y}\right)^{+} & \xrightarrow{\cong} & \left(\mathbb{R}^{y}\right)^{+}
\end{array}
$$

$(\cdot)^{+}$means the 1-point compactifications.

- Let $G=\{ \pm 1\}$. Apply $\tilde{H}_{G}^{*}\left(\cdot ; \mathbb{F}_{2}\right)$ to the diagram.

$$
\begin{array}{cc}
\tilde{H}_{G}^{*}\left(\left(\tilde{\mathbb{R}}^{x+a} \oplus \mathbb{R}^{y}\right)^{+} ; \mathbb{F}_{2}\right) & \stackrel{\left(f^{+}\right)^{*}}{\leftrightarrows} \tilde{H}_{G}^{*}\left(\left(\tilde{\mathbb{R}}^{x} \oplus \mathbb{R}^{y}\right)^{+} ; \mathbb{F}_{2}\right) \\
i_{1}^{*} \downarrow & \begin{array}{c}
i_{2}^{*} \downarrow \\
\tilde{H}_{G}^{*}\left(\left(\mathbb{R}^{y}\right)^{+} ; \mathbb{F}_{2}\right)
\end{array} \stackrel{\cong}{ } \quad \tilde{H}_{G}^{*}\left(\left(\mathbb{R}^{y}\right)^{+} ; \mathbb{F}_{2}\right)
\end{array}
$$

- $\tilde{H}_{G}^{*}\left(\left(\mathbb{R}^{y}\right)^{+} ; \mathbb{F}_{2}\right)=\tilde{H}^{*}\left(B G ; \mathbb{F}_{2}\right)=\tilde{H}^{*}\left(\mathbb{R P}^{\infty} ; \mathbb{F}_{2}\right)=\mathbb{F}_{2}[v]$, $(\operatorname{deg} v=1)$
- $\operatorname{Im} i_{1}^{*}=\left\langle e\left(\tilde{\mathbb{R}}^{x+a}\right)\right\rangle=\left\langle v^{x+a}\right\rangle, \operatorname{Im} i_{2}^{*}=\left\langle e\left(\tilde{\mathbb{R}}^{x}\right)\right\rangle=\left\langle v^{x}\right\rangle$.
- Commutativity $\Rightarrow \operatorname{Im} i_{1}^{*}=\left\langle v^{x+a}\right\rangle \supset \operatorname{Im} i_{2}^{*}=\left\langle v^{x}\right\rangle$

$$
\Rightarrow \quad 0 \geq a=\operatorname{ind}_{\mathbb{R}} D_{A}=\frac{1}{4}\left(-\left|w^{2}\right|+b_{2}^{\ell}\right)
$$

Definite 4-manifold with boundary

Recall:

- [Elkies]
Q : Definite standard \Leftrightarrow \forall characteristic $w, 0 \geq-\left|w^{2}\right|+\operatorname{rank} Q .(*)$
- For closed X, if $Q_{X}, Q_{X, \ell}$: definite $\Rightarrow(*)$.
- However if X has a boundary $Y: \mathbb{Z} H S^{3}$, even when Q_{X} or $Q_{X, \ell}$: definite, (*) may not be true.
- Instead, we can estimate how false $(*)$ is by some quantities related with Y.

> For $Q_{X} \rightarrow$ Froyshov invariant
> For $Q_{X, \ell} \rightarrow \mathbb{Z}_{2}$-Froyshov invariant

Froyshov invariants

- Y: $\mathbb{Q} H S^{3}$ with Spin^{c}-structure
- [Froyshov invariant] $\delta^{\mathrm{U}(1)}(Y)=-h(Y) \in \mathbb{Q}$
$\delta^{\mathrm{U}(1)}(Y)$: Manolescu's convention
$h(Y)$: Froyshov, Kronheimer-Mrowka
Theorem [Froyshov]
- $\delta^{\mathrm{U}(1)}\left(Y_{1} \# Y_{2}\right)=\delta^{\mathrm{U}(1)}\left(Y_{1}\right)+\delta^{\mathrm{U}(1)}\left(Y_{2}\right), \delta^{\mathrm{U}(1)}(-Y)=-\delta^{\mathrm{U}(1)}(Y)$
- $\delta^{\mathrm{U}(1)}(Y)$ is a Spin^{c}-homology cobordism invariant.
- W : compact $\operatorname{Spin}^{c} 4$-manifold s.t.

$$
\begin{aligned}
& \partial W=Y_{1} \cup \cdots \cup Y_{k}, Y_{i}: \mathbb{Q} H S^{3} . \\
& \quad b_{+}(W)=0 \quad \Rightarrow \quad \sum_{i=1}^{k} \delta^{\mathrm{U}(1)}\left(Y_{i}\right) \geq \frac{1}{8}\left(c_{1}(L)^{2}+b_{2}(W)\right)
\end{aligned}
$$

where L is the determinant line bundle.

Corollary [Froyshov]

W : compact 4-manifold, $\partial W=Y_{1} \cup \cdots \cup Y_{k}, Y_{i}: \mathbb{Z} H S^{3}$. If $b_{+}(W)=0$, for \forall characteristic element w of Q_{W}

$$
\sum_{i=1}^{k} \delta^{\mathrm{U}(1)}\left(Y_{i}\right) \geq \frac{1}{8}\left(-\left|w^{2}\right|+b_{2}(W)\right)
$$

\mathbb{Z}_{2}-Froyshov invariant

- $Y: \mathbb{Q} H S^{3}$ with Spin^{c}-structure

Theorem 3 [N, '16]
We can define a topological invariant $\delta^{\mathbb{Z}_{2}}(Y) \in \mathbb{Q}$

- $\delta^{\mathbb{Z}_{2}}(Y)$ is a homology cobordism invariant (for $\mathbb{Z} H S^{3}$).
- $\delta^{\mathbb{Z}_{2}}(Y) \leq 2 \delta^{\mathrm{U}(1)}(Y)$
- W : cobordism from Y_{0} to Y_{1} with a \mathbb{Z} bundle $\ell \rightarrow W$ s.t.
$b_{+}^{\ell}(W)=\left.0 \& \ell\right|_{Y_{0}},\left.\ell\right|_{Y_{1}}:$ trivial
For a Spin ${ }^{c_{-}}$structure on ℓ,

$$
\delta^{\mathbb{Z}_{2}}\left(Y_{1}\right) \geq \delta^{\mathbb{Z}_{2}}\left(Y_{0}\right)+\frac{1}{4}\left(\tilde{c}_{1}(E)^{2}+b_{2}^{\ell}(W)\right)
$$

[Remark] $\left.\ell\right|_{Y_{i}}$: trivial $\Rightarrow \operatorname{Spin}^{c_{-}}$str on W induces a $\operatorname{Spin}^{c} \operatorname{str}$ on Y_{i}

Corollary [$\mathrm{N}, \mathrm{'16}$]

W : compact 4-manifold, $\partial W=Y_{1} \cup \cdots \cup Y_{k}, Y_{i}: \mathbb{Z} H S^{3}$. If $\ell \rightarrow W$ is a \mathbb{Z} bundle with $w_{1}(\ell \otimes \mathbb{R})^{2}=0 \& b_{+}^{\ell}(W)=0$, for \forall characteristic element w of $Q_{W, \ell}$

$$
\sum_{i=1}^{k} \delta^{\mathrm{U}(1)}\left(Y_{i}\right) \geq \frac{1}{2} \delta^{\mathbb{Z}_{2}}\left(Y_{1} \# \cdots \# Y_{K}\right) \geq \frac{1}{8}\left(-\left|w^{2}\right|+b_{2}^{\ell}(W)\right)
$$

Conjecture

- $\delta^{\mathbb{Z}_{2}}\left(Y_{1} \# Y_{2}\right)=\delta^{\mathbb{Z}_{2}}\left(Y_{1}\right)+\delta^{\mathbb{Z}_{2}}\left(Y_{2}\right)$
- $\delta^{\mathbb{Z}_{2}}(-Y)=-\delta^{\mathbb{Z}_{2}}(Y)$

A definition of $\delta^{\mathrm{U}(1)}(Y)$

- Let $X=\mathrm{SWF}(\mathrm{Y})$ be the Seiberg-Witten-Floer homotopy type constructed by Manolescu.
Here we assume X as a space.
- $\mathrm{U}(1)$ acts on $X \& X^{\mathrm{U}(1)} \cong\left(\mathbb{R}^{s}\right)^{+}$.
- Apply $\tilde{H}_{\mathrm{U}(1)}^{*}(\cdot ; \mathbb{F})$ to the inclusion $i: X^{\mathrm{U}(1)} \rightarrow X$

$$
i^{*}: \tilde{H}_{\mathrm{U}(1)}^{*}(X ; \mathbb{F}) \rightarrow \tilde{H}_{\mathrm{U}(1)}^{*}\left(X^{\mathrm{U}(1)} ; \mathbb{F}\right)
$$

- Note $\tilde{H}_{\mathrm{U}(1)}^{*-s}\left(X^{\mathrm{U}(1)} ; \mathbb{F}\right) \cong \tilde{H}^{*}\left(\mathbb{C} P^{\infty} ; \mathbb{F}\right) \cong \mathbb{F}[u], \operatorname{deg} u=2$.
- Via this identification, $\exists d, \operatorname{Im} i^{*}=\left\langle u^{d}\right\rangle$.

$$
\delta^{\mathrm{U}(1)}(Y)=d+(\text { some grading shift })
$$

Definition of $\delta^{\mathbb{Z}_{2}}(Y)$

- Since $X=\operatorname{SWF}(\mathrm{Y})$ is a $\mathrm{U}(1)$-space \& $\mathrm{U}(1) \supset\{ \pm 1\}=\mathbb{Z}_{2}$, \mathbb{Z}_{2} acts on $X \& X^{\mathbb{Z}_{2}} \cong\left(\mathbb{R}^{s}\right)^{+}$.
- Apply $\tilde{H}_{\mathbb{Z}_{2}}^{*}\left(\cdot ; \mathbb{F}_{2}\right)$ to the inclusion $i: X^{\mathbb{Z}_{2}} \rightarrow X$

$$
i^{*}: \tilde{H}_{\mathbb{Z}_{2}}^{*}\left(X ; \mathbb{F}_{2}\right) \rightarrow \tilde{H}_{\mathbb{Z}_{2}}^{*}\left(X^{\mathbb{Z}_{2}} ; \mathbb{F}_{2}\right)
$$

- Note $\tilde{H}_{\mathbb{Z}_{2}}^{*-s}\left(X^{\mathbb{Z}_{2}} ; \mathbb{F}_{2}\right) \cong \tilde{H}^{*}\left(\mathbb{R} P^{\infty} ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}[v], \operatorname{deg} v=1$.
- Via this identification, $\exists d_{2}, \operatorname{Im} i^{*}=\left\langle v^{d_{2}}\right\rangle$.

$$
\delta^{\mathbb{Z}_{2}}(Y)=d_{2}+(\text { some grading shift })
$$

Idea of the proof of Theorem 3

- Let W be the Spin $^{c-}$ cobordism in Theorem 3.
- Let $X_{i}=\operatorname{SWF}\left(\mathrm{Y}_{\mathrm{i}}\right)(i=0,1)$.
- $\operatorname{Pin}^{-}(2)$-monopole map on W induces a \mathbb{Z}_{2}-equivariant map

$$
f: \Sigma^{\bullet} X_{0} \rightarrow \Sigma^{\bullet} X_{1}
$$

- We have a diagram

- Applying $\tilde{H}_{\mathbb{Z}_{2}}^{*}\left(\cdot ; \mathbb{F}_{2}\right)$, we obtain the inequality in Theorem 3.

The outline of the proof of Theorem 2

Recall

Theorem 2
Let X be a closed connected ori. smooth 4-manifold. For any nontrivial \mathbb{Z}-bundle $\ell \rightarrow X$ s.t. $w_{1}(\ell \otimes \mathbb{R})^{2}=w_{2}(X)$.

$$
b_{2}^{\ell}(X) \geq \frac{10}{8}|\operatorname{sign}(X)|+2
$$

where $b_{2}^{\ell}(X)=\operatorname{rank} H_{2}(X ; \ell)$.

- $w_{1}(\lambda)^{2}=w_{2}(X) \Rightarrow E=\mathbb{R} \oplus(\ell \otimes \mathbb{R})$
\Rightarrow Spin $^{c_{-}-\text {-structure on }}(X, E)$ has a larger symmetry

$$
\mathcal{G}_{\text {Pin }}^{\prime}=\Gamma\left(\tilde{X} \times_{\{ \pm 1\}} \operatorname{Pin}^{-}(2)\right) .
$$

- For simplicity, assume $b_{1}^{\ell}(X)=0$.
- By taking a finite dimensional approximation of the monopole map, we obtain a proper \mathbb{Z}_{4}-equivariant map

$$
\begin{aligned}
f: \tilde{\mathbb{R}}^{y} \oplus \mathbb{C}_{1}^{x+k} & \rightarrow \tilde{\mathbb{R}}^{y+b} \oplus \mathbb{C}_{1}^{x}, \quad k=\operatorname{ind}_{\mathbb{C}} D_{A}, b=b_{+}^{\ell}(X) \\
\mathbb{Z} / 4 \text { acts on } & \left\{\begin{array}{c}
\mathbb{C}_{1} \text { by multiplication of } i \\
\tilde{\mathbb{R}} \text { via } \mathbb{Z} / 4 \rightarrow \mathbb{Z} / 2=\{ \pm 1\} \curvearrowright \mathbb{R}
\end{array}\right.
\end{aligned}
$$

Here, \mathbb{Z}_{4} is generated by the constant section

$$
j \in \mathcal{G}^{\prime}=\Gamma\left(\tilde{X} \times_{\{ \pm 1\}} \operatorname{Pin}^{-}(2)\right) .
$$

- By using the techniques of equivariant homotopy theory, e.g., tom Dieck's character formula, we can see that any proper \mathbb{Z}_{4}-map of the form,

$$
f: \tilde{\mathbb{R}}^{y} \oplus \mathbb{C}_{1}^{x+k} \rightarrow \tilde{\mathbb{R}}^{y+b} \oplus \mathbb{C}_{1}^{x}
$$

should satisfy $b>k$.

- That is,

$$
b_{+}^{\ell}(X) \geq-\frac{1}{8} \operatorname{sign}(X)+1
$$

