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ABSTRACT. In this note, we survey our recent works on nonsmoothable locally linear
group actions on 4-manifolds. The first part deals with joint works with X. Liu on non-
smoothable 7Z,-actions on elliptic surfaces. The second part deals with a joint work with
Y. Fukumoto on nonsmoothable Z,-actions on contractible 4-manifolds whose boundaries
are Brieskorn homology 3-spheres.

1. Introduction

It is a classical result that every finite group action on a surface is equivalent to a smooth
one. In higher dimensions, there exist examples of nonsmoothable actions. Since bad local
behavior is often the reason why these actions can not be smooth, one can naturally ask
whether locally linear actions are smoothable or not. In [24], S. Kwasik and K. B. Lee
proved that in dimension 3 a finite group action is smoothable if and only if it is locally
linear. However, in dimensions higher than 3, this is not true. In fact, many examples of
nonsmoothable locally linear actions are known [24, 23, 20, 6, 22, 8].

In this note, we survey our recent works on nonsmoothable locally linear group actions on
4-manifolds. The first part deals with joint works with X. Liu on nonsmoothable Z,-actions
on elliptic surfaces [25, 26]. The second part deals with a joint work with Y. Fukumoto
on nonsmoothable Z,-actions on contractible 4-manifolds whose boundaries are Brieskorn
3-spheres [16].

In [25, 26], X. Liu and the author constructed a lot of examples of nonsmoothable cyclic
group actions on elliptic surfaces.

Theorem 1.1 ([25, 26]). Let Z, be the cyclic group of order p =3, 5 or 7. For each even
integer n > 2, let X,, = E(n) be the simply-connected relatively minimal elliptic surface
over S% whose Euler number e(X,,) is 12n. Let
n—2
(1.2) Cn—2:= | n—2
2

(We assume ¢y = 1.) If ¢,_o Z 0 mod p, then there exists a locally linear Z,-action on X,
which s nonsmoothable with respect to infinitely many smooth structures on X,, including
the standard one.

Remark 1.3. We do not know whether there exists a smooth structure on X,, on which the
above action is smoothable, or not.
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Remark 1.4. The number ¢,_» is the Seiberg-Witten invariant of E(n) for the spin struc-
ture.

In general, the proof of the existence of nonsmoothable locally linear actions is divided
into two steps: (1) to give a constraint on smooth actions, (2) to construct a locally linear
action which would violate the constraint.

In our case, to construct locally linear actions, we invoke a remarkable realization the-
orem by Edmonds and Ewing [10]. On the other hand, to give a constraint on smooth
actions, we use the Seiberg-Witten gauge theory. In fact, we use a mod p vanishing the-
orem of Seiberg-Witten invariants under Z,-actions, and the calculation of the invariants
for elliptic surfaces.

The mod p vanishing theorem (Theorem 2.12), which is originally proved by F. Fang
[11], and generalized by the author [28], claims that, if some conditions on fixed point data
are satisfied, then the Seiberg-Witten invariant is divisible by p. Therefore, if the Seiberg-
Witten invariant is not divisible by p, then a constraint on fixed point data is obtained.
Obviously, this method can not be used when the Seiberg-Witten invariant is 0.

On the other hand, S. Bauer and M. Furuta defined a stable cohomotopy version of
the Seiberg-Witten invariants [5], and their invariants are true refinement of the original
Seiberg-Witten invariants. For example, all the Seiberg-Witten invariants of K3# K3 are
0, but the Bauer-Furuta invariant of it for the spin structure is non-zero [4, 17].

In [29], the author proved a vanishing theorem for Bauer-Furuta invariants under Zo-
actions, which has a similar form to the aforementioned mod p vanishing theorem, and
constructed a locally linear involution on K3# K3 by using the vanishing theorem.

Theorem 1.5 ([29]). There exists a locally linear Zs-action on X = K3#K3 which is
nonsmoothable with respect to any smooth structure on X.

As a byproduct of our argument, we also have a nonsmoothable involution on K3.

Theorem 1.6 ([29]). There exists a locally linear Zs-action on K3 with isolated fized
points satisfying 6;7;2 = dim H*(X;R)?2 = 3 which is nonsmoothable with respect to any
smooth structure on K3.

It would be interesting to compare this with a result by J. Bryan:

Theorem 1.7 (Bryan [6]). Fvery smooth Zs-action on K3 with isolated fized points sat-
isfies b2 = 3

Recently, Y. Fukumoto and the author began to study nonsmoothable Z,-actions on con-
tractible 4-manifolds whose boundaries are Brieskorn homology 3-spheres by the Seiberg-
Witten gauge theory [16]. Such nonsmoothable actions are studied by Kwasik-Lawson in
(23] very widely and systematically, and they used the invariant of Fintushel-Stern [12] in
order to prove the nonsmoothability.

We are interested in the following questions:

(1) Can we prove Kwasik-Lawson’s results by using the Seiberg-Witten gauge theory,

especially by Fukumoto-Furuta’s w-invariants [15], instead of Fintushel-Stern’s in-
variants?
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(2) Is there difference between consequences from w-invariants and Fintushel-Stern’s
invariants?

At present, we have a partial result for (1). That is, for several examples, Kwasik-Lawson’s
results can be obtained by using w-invariants. To state our results, we need some prelimi-
naries.

Let ¥(a, b, ¢) be the Brieskorn variety. If a, b and ¢ are mutually coprime, then X(a, b, ¢)
is an integral homology 3-sphere. For an integer p, there is the standard Zp-action on
¥(a, b, c) which is a part of the circle action of the Seifert fibration.

Kwasik-Lawson [23] proved the following result on the extension of the standard action
to a locally linear action on a contractible 4-manifold W whose boundary is ¥(a, b, ¢):

Theorem 1.8 ([23], ¢f. [9]). Let p be an odd prime. There exist a contractible 4-manifold
W whose boundary is X(a,b,c), and a locally linear Z,-action on W which extends the

standard action on X(a,b, c) and has exactly one fived point of type (r,s) if and only if
{a,b,c} is congruent modulo p to {r,s, 1} up to sign, and abc =rs mod p.

Remark 1.9. This theorem is based on [9], and is a part of the proof of Edmonds-Ewing’s
theorem (Theorem 2.8). See Remark 2.11.

Note that Casson-Harer [7] and several other authors proved that there are infinitely
many families of 3(a, b, ¢) which can be boundaries of smooth contractible 4-manifolds W.
With these understood, our result is;

Theorem 1.10 ([16]). For (a,b,c) and p below, ¥(a, b, c) bounds a smooth contractible 4-
manifold W, and the standard Z,-action extends locally linearly over W, but there is no
such smooth action.
(1) p=3, (a,b,c) = (2,11,53), (5,13,14), (5,16,17), (5,31,32), (5,46,47), (11,31, 32).
(2) p=5, (a,b,c) = (11,31,32). (3,13,14), (3,16,17), (3,28,29), (3,31,32), (3,43,44).
(3) p=17, (a,b,c) =(3,19,20), (3,22,23), (3,40,41), (5,33,34), (5,36,37), (5,68,69).

The organization of this note is as follows: Section 2 gives some preliminaries. Section
3 proves a part of Theorem 1.1 in the case when G = Z3 and X = K3. In Section 4, the
proof of Theorem 1.10 is explained.

2. Preliminaries

In this section, we give some preliminaries, and collect several known results on locally
linear and smooth group actions.

2(i). Locally linear actions. First, let us recall the definition of locally linear actions of
finite groups.

Definition 2.1. Let GG be a finite group, and X a topological n-manifold. A topological
G-action on X is called locally linear if, for any x € X, there exists a neighborhood V,
which is invariant under the action of the isotropy G, of x which satisfies,

(1) V, is homeomorphic to R™,
(2) G, acts on V, = R™ in a linear orthogonal way.
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Remark 2.2. In general, a smooth action is locally linear. However, the converse is not
true.

Let us recall what is nonsmoothable group actions. Let X be a topological manifold and
G a finite group. If X admits a smooth structure and a smooth structure o is specified,
then we write the manifold with the smooth structure o by X,. Let LL(G, X) be the set
of equivalence classes of locally linear G-actions on X. Here, two locally linear actions are
said equivalent if there exists a homeomorphism f of X such that one action is conjugate
to the other by f. Similarly, let C*°(G, X,) be the set of equivalence classes of smooth
G-actions on X,. Here, the equivalence of two smooth actions is given via a diffeomorphism
of X,;. Then we have a forgetful map ®,: C*(G, X,) — LL(G, X) forgetting the smooth
structure.

Definition 2.3. A locally linear action is called nonsmoothable with respect to the smooth
structure o if its class is not contained in the image of ®,.

2(ii). The G-index theorems. For the generality of G-index theorems, we refer 1, 2, 3,
31]. Let G = Z, be a cyclic group of odd prime order p. Suppose a smooth G-action on
a closed smooth 4-manifold X is given. Suppose further that the G-action is pseudofree,
i.e., GG acts freely on the complement of a discrete subset. When we fix a generator g of
G = Z,, the representation at a fixed point can be described by a pair of nonzero integers
(a,b) modulo p which is well-defined up to order and changing the sign of both together.
Suppose that the fixed point data for the generator g are given as {(a;, b;) } ;.
Then the G-signature formula is

N

(2.4) Sign(g, X) = Z Sazb;
i=1

where

(25) N (S (SR

v DE 1)

and ¢ = exp(2mv/—1/p).
Suppose further that X is spin and the G-action is a spin action. Let Dx be the G-
equivariant Dirac operator. Then the G-spin theorem is

N
(26) indg DX - Zpa,—bm
i=1
where
1 1
(2.7) Dy =

(S R (O R (O R (O
and signs of (¢*)"? and (¢¥)"/? are determined by the rule

{ierr) ={@} =1
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(This is because G is supposed odd order, and the g-action generates the G-action on the
Spin-structure. See [3, p.20] or [31, p.175].)

2(iii). The realization theorem by Edmonds and Ewing. We summarize the real-
ization theorem of locally linear pseudofree actions by A. L. Edmonds and J. H. Ewing
[10] in the very special case when G = Zs, Zs or Zs;.

Theorem 2.8 ([10]). Let G be the cyclic group of order p, where p = 3,5 or 7. Suppose
that one is given a fixed point data

D= {(ao, b0)7 (a17 bl)a S (an; bn)a (an-i—l; bn—i—l)};

where a;,b; € Z, \ {0}, and a G-invariant symmetric unimodular form
P VXV —-2Z,

where V is a finitely generated Z-free Z|G]-module. Then the data D and the form (V, ®) are
realizable by a locally linear, pseudofree, G-action on a closed, simply-connected, topological
4-manifold if and only if they satisfy the following two conditions:

(1) The condition REP: As a Z|G]-module, V' splits into F & T, where F is free and T
is a trivial Z|G]-module with rank; T' = n.
(2) The condition GSF: The G-Signature Formula is satisfied:

29) Sign(g, (V.#) = 3 (G,

where ¢ = exp(2myv/—1/p).

Remark 2.10. In [10], A. L. Edmonds and J. H. Ewing prove the realization theorem for all
cyclic groups of prime order p, and for general p, the third condition TOR which is related
to the Reidemeister torsion should be satisfied. However, when p is a prime less than 23,
the condition TOR is redundant. This follows from the fact that the class number of Z[(]
is 1, and Corollary 3.2 of [10].

Remark 2.11. The proof of the “if” direction of Theorem 2.8 is given by an equivariant
handle construction: By attaching G-equivariant 0- and 2-handles according to the given
algebraic data, we obtain a 4-manifold X’ with a smooth G-action whose boundary is an
integral homology 3-sphere with a free G-action. Then, the required manifold X with a
locally linear action is obtained from gluing X’ with a contractible 4-manifold W with a
locally linear G-action as in Theorem 1.8. Note that the resulting locally linear G-action
is smooth except one point.

2(iv). Mod p vanishing theorem of Seiberg-Witten invariants. Let p be a prime,
and suppose that G = Z, acts on a smooth 4-manifold X smoothly. Fix a G-invariant
metric. Suppose that the G-action lifts to a Spin®-structure ¢. Fix a G-invariant connection
Ap on the determinant line bundle L of c¢. Then the Dirac operator Dy, associated to Ay is
G-equivariant, and the G-index of D4, can be written as indg D4, = Zg;; k;C; € R(G) =
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Z[t]/(t?—1), where C; is the complex 1-dimensional weight j representation of G and R(G)
is the representation ring of G.
In such a situation, the following theorem is proved.

Theorem 2.12 ([11, 28]). Let G be the cyclic group of prime order p, and X be a smooth
closed oriented 4-dimensional G-manifold with by = 0, by > 2 and bf > 1. Suppose that
the G-action lifts to a Spin‘-structure c. If 2k; < 1+ b5 for j = 0,1,... ,p—1, then the
Seiberg- Witten invariant SW x(c) for ¢ satisfies

SWx(c) =0 mod p.

Remark 2.13. In [11], Fang suppose that b¢ = by. In [28], the author weakened that
condition as above, and generalized to the case when b; > 1.

Remark 2.14. Suppose X is spin and has no 2-torsion in Hi(X;Z). Let ¢y be the Spin®-
structure which is determined by a Spin-structure, whose determinant line bundle L is
trivial. If p is an odd prime, then every G = Z,-action on X has a spin lift. In other
words, there exist a G-action on ¢y such that the induced G-action on L is the product of
the G-action on X and the trivial G-action on fiber. (See e.g., Lemma 5.7 in [28].) Let Ay
be the trivial flat G-invariant connection on L. Then ind, D4, can be calculated by the
G-spin theorem (2.6).

3. Proof of Theorem 1.1 in the case of Zs-actions on K3

In this section, we give a proof of Theorem 1.1 in the simplest case: G = Zs and X = K3.
The argument in this section is a prototype of the proof of the general case of Theorem 1.1.

3(i). Possible fixed point data. By the Lefschetz formula and the G-signature formula,
we can make the list of candidates for fixed point data of locally linear actions.

In the case when G = Zs, there are two types of fixed points.

e The type (+): (1,2) = (2,1).

e The type (—): (1,1) = (2,2).
Let m4 be the number of fixed points of the type (+), and m_ be the number of fixed
points of the type (—).

Let X be F(n) as a topological manifold. Suppose that a locally linear pseudofree G-
action on X is given. Put e = x(X) and s = Sign(X). First of all, the ordinary Lefschetz
formula should hold: L(g, X) = 2 + tr(g|m2x)) = #X°. Noting that #X = my +m_
and 2 + tr(g|m2(x)) < e, we obtain

(3.1) my +m_ <e.
Note that
1
X(X/@) = e+ 2(m +m_)).
Since x(X/G) is an integer and e = 12n, we have
(3.2) my+m_ =0 mod 3.
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By Theorem 2.8, the G-Signature Formula should hold:

. _ 1
Sign(g, X) = Sign(g*, X) = 3(my —m-),

Sign(X/G) = g { s+ S ) |

Since Sign(X/G) is an integer,

(3.3) my —m_ = —gs mod 9.
We can calculate S and b from y(X/G) and Sign(X/G):
1 1
(3.4) bS = 6{e+s+§(8m++4m_)} -1,
o 1 1
(35) b_ = 8 e— S+ §(4m+ + 8m_) — 1.
These should satisfy
(3.6) 0<bS <by, 0<bY <b_.

By (3.1), (3.3), (3.6) and non-negativity of m, and m_, we obtain the list of the candi-
dates of fixed point data (m,,m_). For example, in the case when X = F(2) = K3, there
are only 4 possible types of fixed point data of locally linear Zs-actions on X as follows:

TABLE 1. The types of Zs-actions on K3

Type | #X | my | m_ | b5 | G | b€ | Sign(X/Q)
Ao 6 6 0 |10} 3|7 —4
Ay 9 3 6 (121 3|9 —6
As 12 0|12 14| 3 |11 -8
B 3 0 318117 —6

3(ii). A constraint on smooth Zs-actions on elliptic surfaces. In this subsection,
we give a constraint on smooth Zs-actions on elliptic surfaces which is obtained from the
mod p vanishing theorem (Theorem 2.12).

Theorem 3.7. Let G = Zs, and X be a closed oriented smooth simply-connected spin
4-manifold which satisfies 2x(X) + 3Sign(X) = 0. (Note that X is a homotopy E(n).)
Suppose G acts on X smoothly and pseudofreely. Let ¢y be the Spin®-structure determined
by the Spin-structure, and SWx(co) be the Seiberg- Witten invariant of c¢o. If SWx(co) Z 0
mod 3, then

(3.8) my=0orm_=0.
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Proof. Let G act on ¢y such that the G-action on the trivial determinant line bundle is
the product of the G-action on X and the trivial action on fiber as in Remark 2.14. Take
the trivial flat connection Ag as the reference G-invariant connection. By Theorem 2.12,
SWx (cp) # 0 mod 3 implies that there exist j which satisfies 2k; > 1 + bS.

Note that b$ is calculated in (3.4).

Coefficients k; are calculated by the G-spin theorem. By the G-spin theorem (2.6), we
have

1
indg DAO = k?(] + Ckl + CQI{JQ = 5(777/+ — m_),
1
indyz Da, = ko + (k1 + Cha = g(m+ —m-),
1
ind1 DAO = ]{?0 + ]{?1 + ]{?2 = —gs.

Solving these, we have

1
ko= c(my —m-) — 15
1 1
ki = ko = —§(m+ —m_) — 215
From these and the relation 2e + 3s = 0, we have m; = 0 or m_ = 0. O

Now, we recall Seiberg-Witten invariants of elliptic surfaces. Let E(n)y,; be the relatively
minimal elliptic surface over S? with the Euler number 12n whose multiple fibers have
multiplicities {k,l}. (We assume k, [ may be 1.) Suppose that n is even and ged(k,[) = 1.
The last condition implies that £(n); is simply-connected. For such E(n)y;, the following
are known:

(1) E(n)g, is homeomorphic to 3 K3#(% —1)S? x S? if and only if k and [ are odd and
mutually coprime. (See e.g. [32].)

(2) E(n)k, is diffeomorphic to E(n)y ;o if and only if {k,1} = {k',I'} as unordered pair.
(See [19].)

(3) E(2)11 = E(2) (no multiple fiber) is diffeomorphic to the standard K3 surface.

The Seiberg-Witten invariant of E(n);; for the spin structure ¢y is given as follows [19]:

n—2
(3.9) SWeyei(co) = (=1)"T | n—2
2

Note that this is independent of &, .
By Theorem 3.7, we have,

Corollary 3.10. For every smooth Zs-action on E(n)i;, if ch—2 in (1.2) is not divisible
by 3, then my =0 or m_ = 0.
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3(iii). A nonsmoothable Zs-action on K3. Let X = K3 and G = Zs. Recall Table 1.
Since SWx(¢g) = 1 by (3.9), the data (my,m_) = (3,6) can not be realized as fixed point
data of a smooth action by Corollary 3.10.

Now, we construct a locally linear G = Zs-action on X = K3 with (my,m_) = (3,6) by
Theorem 2.8. The only thing to do is to construct a G-invariant form which satisfies the
conditions in Theorem 2.8.

Let (Viks, Px3) be the intersection form of the K3 surface, which is even and indefi-
nite. Since an even indefinite form is completely characterized by its rank and signature,
(Vis, Pk3) is isomorphic to 3H @114, where H is the hyperbolic form, and T'y6 is a negative
definite even form of rank 16 given below. We will construct G-actions on 3H and I'yg
separately.

The lattice I'yg is the set of (21,... ,216) € (3Z)' which satisfy

(1) ; =x; mod Z for any 1, j,
(2) 2% 2, =0 mod 2Z.
The unimodular bilinear form on I'y4 is defined by — leil z?.

Lemma 3.11. For each integer k which satisfies 0 < k < 5, there is a G-action on I'yg
such that

I'16 = (16 — 3k)Z @ kZ[G] as a Z|G]-module.
Proof. When k = 0, it suffices to take the trivial G-action. Hence we suppose k > 1.

Note that the symmetric group of degree 16 acts on I'1g as permutations of components.
For a fixed generator g of GG, define the G-action on 1" by

g=1(1,2,3)(4,5,6)--- (3k — 2,3k — 1, 3k),

where (I, m,n) is the cyclic permutation of (x;, ,,, x,,).
As a basis for I'yg, we take

6i—|—616, (121,,9),
fi: 161'_6167 (Z: 10~ ,15),
5(61 +eéx+ -+ 616)7 (Z = 16),
where ey, ..., e is the usual orthonormal basis for R'®. Then the basis (f1, f2,--- , fi6)
gives required direct splitting. O

The required G = Zs-action on (Vks, Prs) = 3H @ I'16 is given as follows: Let G act on
3H trivially, and on T'y6, as I'1g = Z @ 5Z[G]. Then, the conditions REP and GSF in The-
orem 2.8 are satisfied. Therefore, we have a locally linear G-action with (my,m_) = (3,6)
on a manifold X’. Since X’ has the even intersection form (Vis, ®gs3), X' is homeomor-
phic to K3 by Freedman’s theorem [14]. Thus, we obtain a nonsmoothable locally linear
Zs-action on K3 for the smooth structures F(2),;. Since different pairs of {k, 1} give dif-
ferent smooth structures on K3, the action is nonsmoothable for infinitely many smooth
structures.
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Remark 3.12. By Fintushel-Stern’s knot surgery construction [13], we can construct more
smooth structures on which our action is nonsmoothable.

Remark 3.13. Above, we have constructed a locally linear action of the type A; in Table 1.
By the similar method, locally linear actions of other types can be constructed [25]. Fur-
thermore, among these four types, the types Ag and B can be realized by smooth actions.
(See [25] and [33].) On the other hand, we do not know whether the type A, can be realized
by a smooth action, or not.

3(iv). Remark. As mentioned in the introduction, many authors have constructed a lot of
examples of nonsmoothable locally linear actions [24, 23, 20, 6, 22, 8]. In papers [20, 6, 22],
the authors use the gauge theory to prove that the actions are nonsmoothable. It is
interesting that these actions are nonsmoothable for arbitrary smooth structures.

For instance, [6] and [22] use some G-equivariant variants of 10/8-inequalities which give
constraints on purely topological data which do not depend on smooth structures. There-
fore the locally linear actions which violate these inequalities are clearly nonsmoothable
for arbitrary smooth structures.

On the other hand, in our case, we need to check the Seiberg-Witten invariant for each
smooth structure in order to judge the nonsmoothability. This would allude that our result
is weaker than results in above papers, however, in another point of view, this fact would
suggest that our examples could be subtle.

At present, such subtle examples are known only by [8]. In [8], Chen and Kwasik prove
that there is a family of symplectic exotic K3 surfaces on which every effective action of
odd order group is nonsmoothable. On the other hand, we have several examples of smooth
actions of odd order cyclic groups on the standard K3. This means that there are locally
linear actions on K3 whose smoothabilities depend on smooth structures.

With these understood, we suggest the following problem (c¢f. Theorem 3.7 and Corol-
lary 3.10).

Problem 3.14. Suppose that n is an even positive integer, and ¢,—o in (1.2) satisfies
Cn—2 Z 0 mod 3. Is there a smooth structure on E(n) which admits a smooth Z/3-action
with my > 0 and m_ > 07

4. Nonsmoothable Z,-actions on contractible 4-manifolds

In this section, we explain the proof of Theorem 1.10.

Suppose that the standard Z,-action on ¥(a,b, ¢) extends to a smooth Z,-action on a
smooth contractible 4-manifold W with one fixed point x. Then, for some neighborhood
N ofz, U := (W \ N)/Z, gives a smooth homology cobordism between @ = X(a, b, c)/Z,
and a lens space L(p, q). We seek a constraint on such smooth cobordisms. In fact, such a
constraint is obtained by using the Seiberg-Witten moduli.

4(i). The virtual dimension of the Seiberg-Witten moduli. Let ¥ = X(ay,...a,)
be a Seifert integral homology 3-sphere with the Seifert invariant {0, (a1, b1), ..., (@, bn)}
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such that

>ho-l

i=1

where a = a; ---a,. Let L — Z be the associated V-line bundle. Topologically, Z is a
2-sphere.

The disk bundle of a V-line bundle L' — Z is denoted by D(L’), and the sphere bundle
by S(L'). Note that ¥(aq,...,a,) = S(L).

Suppose p is an odd prime which is coprime to all a;’s. We concentrate on (D(L?), S(L?)),
and put V = D(LP) and Q = S(L?). Note that Q = S(L?) = X(aq,... ,an)/Z,.

Suppose there exists a smooth homology cobordism U between @ and L(p,q). Let us
consider the V-manifold,

X =V UUUcL(p,q),

where ¢L(p, q) is the cone of L(p,q). For a Spin‘-structure ¢ on X, let d(c) be the virtual
dimension of the Seiberg-Witten moduli for ¢. (The number d(c) is essentially the w-
invariant for U.) The following will give a constraint on smooth cobordisms.

Proposition 4.1. If there exists a smooth homology cobordism U between @ and L(p,q),
then d(c) <0 for every c.

Proof. The proof is based on an argument in the proof of Donaldson’s diagonalization
theorem by the Seiberg-Witten equations. (See e.g. [27].)

Note that X is negative definite since ¢;(L”)[Z] < 0. (See Proposition 4.2.) Since
b1(X) = 0, d(c) is odd. Suppose that d(c) > 0. By perturbing the Seiberg-Witten equa-
tions, the Seiberg-Witten moduli M, becomes a d(c)-dimensional manifold except the
unique reducible, and a neighborhood of the reducible is of the form of a cone of CP*
where k = (d(c) — 1)/2. Removing the cone from M., we obtain a compact manifold M’
whose boundary is CP*. On the other hand, M’ is embedded in an infinite dimensional
space B* of configurations which has the same homotopy type with CP>. There exists a
nonzero cohomology class u € H?*(B*;Z), and it is known that (u, [CP¥]) # 0. However
CP* bounds a compact manifold M’. This is a contradiction. O

4(ii). Calculation of d(c). In this subsection, we calculate d(c). Let Pict,(Z) be the set
of isomorphism classes of V-line bundle over Z. The following facts are easily proved.

Proposition 4.2 (See e.g. [18]). The following hold:
(1) ei(L)[Z] = =1/ where o = ay - - - ay,.
(2) er(L7)[Z] = —p/ e
(3) Pic,(7) is generated by the class of L, and therefore Pict, (7)
(4) Pici,(X) = Picl,(D(L?)) = Picl,(7) =~ Z.
(5) The restriction map Picl, (X) — Pic*(S(LP)) = Pic'(L(p, q)) is the mod p map Z —
/

-
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Z.



12 NOBUHIRO NAKAMURA

Proposition 4.3.
- 1
T Z]=2— 1——.
(T2)7 Z( 5

By above propositions, we have 77 = L! where

On the other hand, T'L? = «n*[? @& T'Z. Thus the canonical V-line bundle of I? is K =
o [~ (F+p)

There is the canonical Spin®-structure on X whose determinant line bundle is K~!. We
can make another Spin®-structure c,, by twisting the canonical by the V-line bundle 7* L™
for each m. Then the determinant line bundle of ¢, is

Ly=K'@n*L*™ =g L/tr+m,

We supposed p is odd. If f + p+ 2m =0 mod p, then Em|5(Lp) is trivial, hence ¢, |s(zr)
is the spin.

Theorem 4.4. The virtual dimension d(c,,) of the Seiberg-Witten moduli for the Spin°®-
structure ¢, is given as follows:

d(cm) = % {—pia(f+p+2m)2+1

n a;—1
- Z ~ Z {COt (W—l> cot (prll) + 2cos (7((1 +pbi+ 2mbl)l> csc (W—l> csc (prJ)}
— Qi —1 a; a; a; a; a;

122 1 om/
— - Z {cot (W—Z) cot (W—QZ> + 2 cos (W( ta+om )l> CSC (W—l> CSC (L(ﬂ)} — 1.
y— p p p p p

The integer m’ is given as follows: Define an integer m, by

%f if [ is even,
ms =
# if fis odd.

Then cp,|sry is the spin. Let m! be an integer such that 1+ q 4 2m/, = 0 mod p. (This
m’, corresponds to the spin on L(p,q).) Put 6 =m —ms. Then m' is given by

(4.5) m' =m. + 0.

Theorem 4.4 is proved by using Kawasaki’s V-index theorem [21].
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4(iii). Proof of Theorem 1.10. Due to Proposition 4.1, there is no smooth homology
cobordism between @ = X(a, b, ¢)/Z, and L(p, q) if one of the following holds:

(1) For some ¢,,, d(c,,) is not an integer.
(2) For some ¢,,, d(c,,) is a positive integer.

For every (a, b, c) and p in Theorem 1.10, it turns out that there is no smooth homology
cobordism between @ = ¥(a, b, ¢)/Z, and L(p, q) for any g by computer calculations. This
means there is no smooth extension of the standard Z,-action on ¥(a, b, c) over W.

On the other hand, there is a locally linear extension by Theorem 1.8, and W admits a
smooth structure by [7] etc. Thus, the theorem is established.
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