Nonsmoothable involutions on K3 and K3#K3

Nobuhiro Nakamura

The University of Tokyo

January 28, 2009

Nobuhiro Nakamura

Nonsmoothable involutions on K3 and K3#K3

Nonsmoothable involution on K3Nonsmoothable involution on K3#K3The proof of the vanishing theorem of Bauer-Furuta invariants

Main Results

Main Theorem

- 1. \exists Nonsmoothable locally linear \mathbb{Z}_2 -action on X = K3.
- 2. \exists Nonsmoothable locally linear \mathbb{Z}_2 -action on X = K3#K3.

Remark

The above actions are nonsmoothable w.r.t. \forall smooth structures on X.

Strategy for proof

The proof is divided into 2 steps:

- 1. Give constraints on smooth actions
 - (1) $K3 \longrightarrow Rohlin's theorem$
 - (2) $K3\#K3 \longrightarrow \text{Bauer-Furuta invariants}$
- 2. Consruct loc. lin. actions which violate the constraints.
 - → [Edmonds-Ewing'92]

Remark

- ▶ [N.] used the Seiberg-Witten invariants for 1(1).
- ▶ The referee of the journal pointed out that Rohlin's theorem is enough for 1(1)!!

Nobuhiro Nakamura

Nonsmoothable involutions on K3 and K3#K3

Nonsmoothable involution on K3Nonsmoothable involution on K3#K3The proof of the vanishing theorem of Bauer-Furuta invariants

Known results

Nonsmoothable loc. lin. involutions

- ▶ [Kwasik-Lee'88] $\mathbb{Z}_2 \curvearrowright S^4$. (Not orientation-preserving.)
- ► [Kwasik-Lawson'93] $\mathbb{Z}_2 \curvearrowright W$: contractible s.t. $\partial W = \text{Brieskorn}$.
- ▶ [Bryan'98] $\mathbb{Z}_2 \curvearrowright K3$.

Cf. Corks [Akbulut-Yasui]...

Nonsmoothable loc. lin. actions on K3

- ► [Bryan'98] as above.
- ▶ [Liu-N.'07] $\mathbb{Z}_p \curvearrowright K3$, (p = 3, 5, 7).
- ▶ [Chen-Kwasik'07] $\mathbb{Z}_p \curvearrowright \text{exotic } K3$, (p: prime, ≥ 7).
- ▶ [Kiyono'08] $\mathbb{Z}_p \curvearrowright K3$, (p: large prime).

Contents

Nonsmoothable involution on K3

Constraint on smooth involutions 1
Construction of loc. lin. actions

Construction of a nonsmoothable involution on K3

Nonsmoothable involution on K3#K3

Constraint on smooth involutions 2 Construction of a nonsmoothable involution on K3#K3

The proof of the vanishing theorem of Bauer-Furuta invariants

Nobuhiro Nakamura

Nonsmoothable involutions on K3 and K3#K3

Nonsmoothable involution on K3Nonsmoothable involution on K3#K3The proof of the vanishing theorem of Bauer-Furuta invariants

Constraint on smooth involutions 1 Construction of loc. lin. actions Construction of a nonsmoothable involution

Nonsmoothable involution on K3

Main Theorem 1

There exists loc. lin. \mathbb{Z}_2 -action on X = K3 s.t.

- 1. $X^{\mathbb{Z}_2}$: discrete & $\#X^{\mathbb{Z}_2} = 8$,
- 2. $b_+(X/\mathbb{Z}_2)=3$,
- 3. nonsmoothable for any smooth structure on X.

Remark

▶ [Bryan'98] For smooth involutions on X = K3,

$$X^{\mathbb{Z}_2}$$
: discrete $\Rightarrow \#X^{\mathbb{Z}_2} = 8 \& b_+(X/\mathbb{Z}_2) = 3$

► The action in Main Theorem 1 has the same fixed point data & action on K3 lattice as "Nikulin involution".

Constraint on smooth involutions 1 (Rohlin's theorem)

Suppose

- \triangleright X: smooth, closed, oriented, spin 4-manifold, $\pi_1 X = 1$.
- $ightharpoonup \mathbb{Z}_2 \curvearrowright X$ smoothly, ori. preserving

[Atiyah-Bott]

 $X^{\mathbb{Z}_2}$: discrete \Leftrightarrow The \mathbb{Z}_2 -action lifts to the spin structure.

 $\Rightarrow X/\mathbb{Z}_2$ is a spin V-manifold.

▶ Quotient singularities = cones of $\mathbb{R}P^3$.

Nobuhiro Nakamura

Nonsmoothable involutions on K3 and K3#K3

Nonsmoothable involution on K3Nonsmoothable involution on K3#K3The proof of the vanishing theorem of Bauer-Furuta invariants Constraint on smooth involutions 1
Construction of loc. lin. actions
Construction of a nonsmoothable involution

Constraint on smooth involution 1 (Rohlin's theorem)

- ▶ There are 2 equivalence classes s_{\pm} of spin structures on $\mathbb{R}\mathsf{P}^3$.
- ▶ Let \tilde{s}_{\pm} be the unique spin str. on the disk bundle D_{\pm} over S^2 of degree ± 2 . $\Rightarrow s_{\pm} = \tilde{s}_{\pm}|_{\partial D_{+}}$.
- ▶ Define the spin type of a fixed point by the spin str. on $\mathbb{R}P^3$ induced from X/\mathbb{Z}_2 .
- ▶ Let $n_{\pm} = \#(\text{fixed points with } s_{\pm})$. $\Rightarrow \#X^{\mathbb{Z}_2} = n_+ + n_-$.

Rohlin's theorem

$$\sigma(X/\mathbb{Z}_2) \equiv n_+ - n_- \mod 16$$

▶ Note $\sigma(X/\mathbb{Z}_2) = \frac{1}{2}\sigma(X)$.

$$\rightarrow \boxed{\frac{1}{2}\sigma(X) \equiv n_+ - n_- \mod 16}$$

Corollary

If
$$X = K3 \& \#X^{\mathbb{Z}_2} = 8$$
, then $(n_+, n_-) = (8, 0)$ or $(0, 8)$.

Remark

 $\sigma(X/\mathbb{Z}_2)$, n_+ and n_- do not depend on smooth structures.

They are invariants of loc. lin. \mathbb{Z}_2 -actions on topological spin 4-manifolds X with discrete $X^{\mathbb{Z}_2}$.

Nobuhiro Nakamura

Nonsmoothable involutions on K3 and K3#K3

Nonsmoothable involution on K3Nonsmoothable involution on K3#K3The proof of the vanishing theorem of Bauer-Furuta invariants Construction of loc. lin. actions

Construction of a nonsmoothable involution

Construction of loc. lin. \mathbb{Z}_2 -actions

Theorem (Edmonds-Ewing '92)

 $\Psi \colon V \times V \to \mathbb{Z}$ a \mathbb{Z}_2 -inv. symm. unimodular even form s.t.

1. As a $\mathbb{Z}[\mathbb{Z}_2]$ -module, $V \cong T \oplus F$,

where
$$T\cong n\mathbb{Z}\leftarrow$$
 a trivial $\mathbb{Z}[\mathbb{Z}_2]$ -module $F\cong k\mathbb{Z}[\mathbb{Z}_2]\leftarrow$ a free $\mathbb{Z}[\mathbb{Z}_2]$ -module

- 2. $\forall v \in V, \Psi(gv, v) \equiv 0 \mod 2$.
- 3. *G-signature formula* $Sign(g, (V, \Psi)) = 0$.
- $\Rightarrow \exists loc. \ lin \mathbb{Z}_2$ -action on a simply-connected 4-manifold X s.t.
 - Its intersection form $= \Psi$,
 - $+ X^{\mathbb{Z}_2} = n + 2.$

Remark

Since Ψ is supposed even, the homeotype of X is unique

<u>Idea of Proof</u> → Equivariant handle construction on

$$\Psi \colon V \times V \to \mathbb{Z}, \quad V = T \oplus F.$$

A unit 4-ball
$$B_0 \subset \mathbb{C}^2 \curvearrowleft \{\pm 1\}$$

$$T \leftrightarrow H_1, \ldots, H_n : \text{ copies of } D^2 \times D^2 \subset \mathbb{C}^2 \curvearrowleft \{\pm 1\}$$

$$F \leftrightarrow \text{ free 2-handles}$$

Note:
$$B_0^{\mathbb{Z}_2} = \{0\}, (D^2 \times D^2)^{\mathbb{Z}_2} = \{0\}.$$

Nobuhiro Nakamura

Nonsmoothable involutions on K3 and K3#K3

Nonsmoothable involution on K3Nonsmoothable involution on K3#K3The proof of the vanishing theorem of Bauer-Furuta invariants Construction of loc. lin. actions

Construction of a nonsmoothable involution

Step 1.

Represent Ψ by a \mathbb{Z}_2 -invariant framed link L in ∂B_0 .

Step2.

Attach H_1, \ldots, H_n and free handles to B_0 equivariantly along L.

$$\longrightarrow \mathbb{Z}_2 \curvearrowright B_0 \cup H_1 \cup \cdots \cup H_n \cup \text{(free handles)}.$$

The \mathbb{Z}_2 -action on $B_0 \cup H_1 \cup \cdots \cup H_n \cup (\text{free handles})$ is smooth.

Step3. Note

- ▶ $\Sigma := \partial(B_0 \cup H_1 \cup \cdots \cup H_n \cup (\text{free handles}))$ is a \mathbb{Z} -homology 3-sphere,
- $ightharpoonup \mathbb{Z}_2 \curvearrowright \Sigma$: free.

Theorem ([EE])

Under the above assumptions, $\exists loc. lin \mathbb{Z}_2$ -action on $\exists W^4$ s.t.

- ▶ W: contractible & $\partial W \cong \Sigma$,
- $\blacktriangleright (\mathbb{Z}_2 \curvearrowright \partial W) \cong (\mathbb{Z}_2 \curvearrowright \Sigma),$
- $W^{\mathbb{Z}_2} = \{1 \text{ point}\}.$

$\rightarrow \exists$ Loc. lin. involution:

$$\mathbb{Z}_2 \curvearrowright X = (B_0 \cup H_1 \cup \cdots \cup H_n \cup (\text{free handles})) \cup_{\Sigma} W$$

Nobuhiro Nakamura

Nonsmoothable involutions on K3 and K3#K3

Nonsmoothable involution on K3Nonsmoothable involution on K3#K3The proof of the vanishing theorem of Bauer-Furuta invariants Constraint on smooth involutions 1
Construction of loc. lin. actions
Construction of a nonsmoothable involution

 $\mathbb{Z}_2 \curvearrowright X = B_0 \cup H_1 \cup \cdots \cup H_n \cup (\text{free handles}) \cup W$, locally linear.

▶ Each of $B_0, H_1, ..., H_n, W$ has one fixed point: $P, Q_1, ..., Q_n, P'$.

$$L = K_1 \cup \cdots \cup K_n \cup \cdots,$$

$$\uparrow r_1 \qquad \uparrow r_n$$

$$H_1 \qquad H_n$$

- $r_i := (\text{the framing of } K_i)$.

How about spin types of fixed points?

Proposition

Suppose K_i bounds a \mathbb{Z}_2 -invariant embedded disk in B_0 .

 $r_i \equiv 2 \mod 4 \Leftrightarrow P \text{ and } Q_i \text{ have same spin types.}$

 $r_i \equiv 0 \mod 4 \Leftrightarrow P \text{ and } Q_i \text{ have different spin types.}$

Construction of a nonsmoothable involution on K3

 $X = K3 \Rightarrow \Psi_X \cong 2E_8 \oplus 3H$.

Define \mathbb{Z}_2 -action on $2E_8 \oplus 3H$ as follows:

- ▶ $\mathbb{Z}_2 \curvearrowright E_8 \oplus E_8$: Permutation
- $ightharpoonup \mathbb{Z}_2 \curvearrowright 3H$: Trivial

Let

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 & 2 \end{pmatrix} \longleftrightarrow \text{indefinite, even, unimodular} \cong 3H$$

Nobuhiro Nakamura

Nonsmoothable involutions on K3 and K3#K3

Nonsmoothable involution on K3Nonsmoothable involution on K3#K3The proof of the vanishing theorem of Bauer-Furuta invariants Constraint on smooth involutions 1 Construction of loc. lin. actions Construction of a nonsmoothable involution

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 & 2 \end{pmatrix}$$

Let $p: S^3 \to S^2$ be the Hopf fibration. Put $L_T = p^{-1}(6 \text{ points})$ $\Rightarrow L_T$ represents A.

Let L_{E_8} be a framed link which represents E_8 .

 $\Rightarrow L := L_T \sqcup (2 \text{ copies of } L_{E_8}) \text{ represents } 3H \oplus 2E_8.$

Note that each component of L_T bounds a \mathbb{Z}_2 -invariant embedded disk.

$$ightarrow$$
 \exists a loc. lin. involution on $X=K3$ with $\begin{cases} \#X^{\mathbb{Z}_2}=8\\ (n_+,n_-)=(4,4) \end{cases}$

▶ Recall [Rohlin's theorem] implies

$$\mathbb{Z}_2 \curvearrowright X = K3 \text{ smoothly}$$
 $\Rightarrow (n_+, n_-) = (8, 0) \text{ or } (0, 8)$

▶ Thus, the above loc. lin. action with $\left\{ \begin{array}{l} \#X^{\mathbb{Z}_2}=8 \\ (n_+,n_-)=(4,4) \end{array} \right\}$ is

Nonsmoothable!!

Nobuhiro Nakamura

Nonsmoothable involutions on K3 and K3#K3

Nonsmoothable involution on K3

Nonsmoothable involution on K3#K3

The proof of the vanishing theorem of Bauer-Furuta invariants

Construction of a nonsmoothable action

Nonsmoothable involution on K3#K3

Main Theorem 2

There exists loc. lin. \mathbb{Z}_2 -action on X = K3 # K3 s.t.

- 1. $X^{\mathbb{Z}_2}$: discrete & $\#X^{\mathbb{Z}_2} = 10$,
- 2. $b_+(X/\mathbb{Z}_2) = 5$,
- 3. nonsmoothable for any smooth structure on X.

Constraint on smooth involutions 2 (Bauer-Furuta invariants)

- ▶ X: smooth, closed, oriented 4-manifold
- ightharpoonup c: Spin^c-structure on X

Suppose $\mathbb{Z}_2 \curvearrowright (X, c)$ smoothly.

 $\Rightarrow \operatorname{ind}_{\mathbb{Z}_2}\operatorname{\mathsf{Dirac}} = k_+ \cdot 1 + k_- \cdot t \in R(\mathbb{Z}_2) \cong \mathbb{Z}[t]/(t^2 - 1).$

Nobuhiro Nakamura

Nonsmoothable involutions on K3 and K3#K3

Nonsmoothable involution on K3Nonsmoothable involution on K3#K3The proof of the vanishing theorem of Bauer-Furuta invariants

Construction of a nonsmoothable action

Theorem (Vanishing theorem of Bauer-Furuta invariants, [N.'08])

Suppose

1.
$$b_1(X) = 0$$
, $b_+(X) \ge 2$, $b_+(X/\mathbb{Z}_2) \ge 1$.

2.
$$d(c) := 2(k_{+} + k_{-}) - (1 + b_{+}(X)) = 1$$
.

3.
$$2k_{\pm} < 1 + b_{+}(X/\mathbb{Z}_{2})$$
.

4.
$$b_{+}(X) - b_{+}(X/\mathbb{Z}_{2})$$
 is odd.

Then the Bauer-Furuta invariant of (X, c) is 0: BF(c) = 0.

Remark

- ightharpoonup d(c) is the virtual dimension of the SW-moduli for c.
- \blacktriangleright When d(c) = 1,
 - $k_+ + k_-$: even \Rightarrow BF(c) $\in \mathbb{Z}/2$.
 - ▶ $k_+ + k_-$: odd \Rightarrow BF(c) \in {0}.

Application to spin manifolds

- ▶ Suppose $\mathbb{Z}_2 \curvearrowright (X, spin)$ smoothly. $\Rightarrow X^{\mathbb{Z}_2}$: discrete
- G-spin theorem $\Rightarrow 2k_{\pm} = \frac{1}{4} \left(\frac{-\sigma(X)}{2} \pm (n_{+} n_{-}) \right)$.

Corollary

$$egin{aligned} b_1(X) &= 0, b_+(X) \geq 2, b_+(X/\mathbb{Z}_2) \geq 1 \ d(\mathit{spin}) &= 1 \ b_+(X) - b_+(X/\mathbb{Z}_2) ext{ is odd} \ \mathsf{BF}(\mathit{spin}) &= 1 \in \mathbb{Z}_2 \end{aligned}
ightarrow rac{1}{4} \left(rac{-\sigma(X)}{2} + |n_+ - n_-|
ight)$$

Fact (Furuta-Kametani-Minami '01)

$$X = \text{homotopy } K3\#K3 \Rightarrow d(spin) = 1 \& BF(spin) = 1.$$

Nobuhiro Nakamura

Nonsmoothable involutions on K3 and K3#K3

Nonsmoothable involution on K3

Nonsmoothable involution on K3#K3

The proof of the vanishing theorem of Bauer-Furuta invariants

Constraint on smoooth involutions 2 Construction of a nonsmoothable action

Construction of a nonsmoothable involution on K3#K3

 $X = K3\#K3 \Rightarrow \Psi_X \cong 4E_8 \oplus 6H.$

Define \mathbb{Z}_2 -action on $4E_8 \oplus 6H$ as follows:

- ▶ $\mathbb{Z}_2 \curvearrowright 2E_8 \oplus 2E_8$: Permutation
- ▶ $\mathbb{Z}_2 \curvearrowright H \oplus H$: Permutation
- $ightharpoonup \mathbb{Z}_2 \curvearrowright 4H$: Trivial

Let

$$B = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \end{pmatrix} \longleftrightarrow \text{indefinite, even, unimodular} \cong 4H$$

$$B = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \end{pmatrix}$$

Let $p: S^3 \to S^2$ be the Hopf fibration. Put $L_T = p^{-1}(8 \text{ points})$ $\Rightarrow L_T$ represents B.

$$ightarrow$$
 \exists a loc. lin. involution on $X=K3\#K3$ with $\begin{cases} \#X^{\mathbb{Z}_2}=10 \\ b_+(X/\mathbb{Z}_2)=5 \\ (n_+,n_-)=(5,5) \end{cases}$

Nobuhiro Nakamura

Nonsmoothable involutions on K3 and K3#K3

Nonsmoothable involution on K3

Nonsmoothable involution on K3#K3

The proof of the vanishing theorem of Bauer-Furuta invariants

Construction of a nonsmoothable action

If the action is smoothed

$$\Rightarrow |n_{+} - n_{-}| \ge \frac{\sigma(X)}{2} + 4(1 + b_{+}(X/\mathbb{Z}_{2}))$$

$$= -16 + 4(1 + 5) = 8.$$

$$\rightarrow \text{Contradiction to } (n_{+}, n_{-}) = (5, 5)$$

$$\rightarrow \text{Nonsmoothable!}!$$

(*Cf.* Rohlin
$$\Rightarrow \sigma(X)/2 = -16 \equiv n_+ - n_- \mod 16$$
.)

The proof of the vanishing theorem

Bauer-Furuta invariants

▶ M. Furuta introduced a finite dimensional model describing the Seiberg-Witten moduli $\mathcal{M}_{X,c}$ of (X,c):

s.t.
$$f^{-1}(0)/S^1 \cong \mathcal{M}_{X,c}$$
.

Nobuhiro Nakamura

Nonsmoothable involutions on K3 and K3#K3

Nonsmoothable involution on K3Nonsmoothable involution on K3#K3The proof of the vanishing theorem of Bauer-Furuta invariants

Theorem & Definition (Bauer-Furuta'04)

The stable homotopy class of f does not depend on parameters. The Bauer-Furuta invariant is defined as

$$BF(c) := [f] \in \{S^V, S^W\}^{S^1}.$$

▶ If $\mathbb{Z}_2 \curvearrowright (X,c) \Rightarrow f \colon V \to W$ is $\mathbb{Z}_2 \times S^1$ -equivariant. $\Rightarrow \mathbb{Z}_2$ -equiv. BF invariant can be defined as

$$\mathsf{BF}^{\mathbb{Z}_2}(c) = [f] \in \{S^V, S^W\}^{\mathbb{Z}_2 \times S^1}.$$

Relation

$$\phi \colon \{S^V, S^W\}^{\mathbb{Z}_2 imes S^1} o \{S^V, S^W\}^{S^1} ext{ \leftarrow forgetting the } \mathbb{Z}_2 ext{-action}$$
 $\mathsf{BF}(c) = \phi(\mathsf{BF}^{\mathbb{Z}_2}(c))$

The idea of the proof of the vanishing theorem

- ▶ Under the assumptions of theorem, we prove ϕ is 0 map. →Use equivariant obstruction theory on Bredon cohomology
- ▶ The proof is inspired by [Bauer '08].

Nobuhiro Nakamura

Nonsmoothable involutions on K3 and K3#K3

Nonsmoothable involution on K3Nonsmoothable involution on K3#K3The proof of the vanishing theorem of Bauer-Furuta invariants

Sketch of the proof

Let us consider a special case:

$$V=\mathbb{C}_+^2\oplus\mathbb{C}_-^2$$
 where $\left\{egin{array}{l} \mathbb{Z}_2\curvearrowright\mathbb{C}_+,\mathbb{R}_+, \ \mathrm{trivially} \ \mathbb{Z}_2=\{\pm 1\}\curvearrowright\mathbb{C}_-,\mathbb{R}_- \ \mathrm{multiplication} \end{array}
ight.$

Lemma

Let P(V) be the complex projective space of V with the induced \mathbb{Z}_2 -action.

$$\{S^V, S^W\}^{S^1} \cong H^6(P(V); \pi_6(S^5))$$

 $\{S^V, S^W\}^{\mathbb{Z}_2 \times S^1} \cong H^6_{\mathbb{Z}_2}(P(V); \underline{\pi}_6(S^5)) \leftarrow \textit{Bredon cohomology}$

- ▶ Fix a \mathbb{Z}_2 -equivariant cell comlpex structure on P(V). \Rightarrow Its chain cpx C_* is a $\mathbb{Z}[\mathbb{Z}_2]$ -module.
- ▶ Let us consider the diagram:

- ▶ C_5 & C_6 are free $\mathbb{Z}[\mathbb{Z}_2]$ -modules $\Rightarrow \phi$ is (×2)-map.
- ▶ Note $H^6(P(V); \pi_6(S^5)) = \mathbb{Z}_2$.

$$\Rightarrow \phi$$
 is 0-map