The Seiberg-Witten equations for families and diffeomorphisms of 4-manifolds

Nobuhiro Nakamura

The University of Tokyo

September 12, 2007

Nobuhiro Nakamura The Seiberg-Witten equations for families

Introduction The Seiberg-Witten equations on a family Applications to diffeomorphisms

Reference

The Seiberg-Witten equations for families and diffeomorphisms of 4-manifolds, Asian J. Math. **7** (2003) 133-138, Correction: Asian J. Math. **9** (2005) 185-186.

Introduction

The Seiberg-Witten equations on a family

Spin^c-structures on a family The Seiberg-Witten equations on a family Moduli spaces for a family

Applications to diffeomorphisms

The case when $d = b^+ = 1$ The case when $d = b^+ = 2$

Introduction

The Seiberg-Witten gauge theory

- X: a smooth closed oriented 4-manifold.
 c: a Spin^c-structure on X.
 → The Seiberg-Witten equations on c.
- The moduli space

 $\mathcal{M}_{c} = \{ \text{ solutions to SW eqns } \} / \mathcal{G},$

where ${\cal G}$ is the gauge transformation group.

Properties of the moduli

- \mathcal{M}_c is a compact space.
- A generic choice of parameters (metric & perturbation)
 → M_c becomes a finite dimensional manifold except quotient singularities = reducibles.
- ► If no reducible, the Seiberg-Witten invariant can be defined from the fundamental class of M_c.

The Seiberg-Witten equations for families

But in some cases,

The role of reducibles The case when $b^+ = 0$

Donaldson's "Theorem A" can be proved by using the SW equations. Theorem A (Donaldson) X: definite \Rightarrow its intersection form \cong diagonal. The idea of the proof by SW. For simplicity, suppose $b_1 = 0$ If negative definite $\Rightarrow \mathcal{M}_c$ always contains exactly one reducible. $\Rightarrow \dim \mathcal{M}_c \leq 0$. \Rightarrow A constraint on characteristic elements. \Rightarrow Diagonal. [Elkies]

Nobuhiro Nakamura The Seiberg-Witten equations for families

Introduction The Seiberg-Witten equations on a family Applications to diffeomorphisms

The role of reducibles The case when $b^+ = 1$

If $b^+ \ge 1 \Rightarrow$ Can avoid reducibles by choosing generic parameters.

 \rightarrow Seiberg-Witten invariants

But, if $b^+ = 1 \Rightarrow$ SW invariants depend on parameters.

The phenomenon called "Wall crossing" occurs.

The wall crossing is used to prove the Thom conjecture by Kronheimer-Mrowka.

- b⁺ = 0 ⇒ 0-dimensional family contains a reducible.
 ⇒ Theorem A.
- b⁺ = 1 ⇒ 1-dimensional family may contain a reducible.
 ⇒ Wall crossing.
 ...
- $b^+ = k \Rightarrow k$ -dimensional family may contain a reducible.

 \Rightarrow What can we conclude?

Consider *d*-dimensional family of a 4-manifold *X*:

 $X \qquad \qquad \downarrow X \quad \leftarrow \text{ a fiber bundle over a } d\text{-dim. mfd } B \text{ with fiber } X \\ B$

- If d < b⁺(X) ⇒ can avoid reducibles.
 (∵)The wall has codimension=b⁺(X) in the parameter space.
- If $d \ge b^+(X) \Rightarrow$ can not avoid reducibles in general. \rightarrow We concentrate on the case when $d = b^+(X)$.
- An argument analogous to the wall crossing

 \rightarrow Constraints on the topology of $\mathbb{X}.$

The case when $d = b^+ = 1$

- X: smooth, closed, oriented, $b_1 = 0$, $b^+ = 1$.
- c: Spin^c-structure s.t. $d(c) := \dim \mathcal{M}_c = 0$.
- $f: X \rightarrow X$ an ori. pres. diffeo preserving c.

Consider the mapping torus

$$X_f := X \times [1,0]/f$$

 \downarrow
 S^1

► c induces a Spin^c-str. \tilde{c} on X_f . \rightarrow The SW eqns on (X_f, \tilde{c}) .

Nobuhiro Nakamura	The Seiberg-Witten equations for families
Introduction The Seiberg-Witten equations on a family	
The Seiberg-Witten equations on a family Applications to diffeomorphisms	

A generic choice of parameters

 $\rightarrow \mathcal{M}_c$ is a compact 1-dim. manifold with boundaries.

Boundaries are reducibles.

- ▶ Note that #reducibles is even.
- On the other hand, #reducibles is related to the action of f on H⁺(X; ℝ).

$$egin{aligned} H_f^+ &:= (H^+(X;\mathbb{R}) imes [0,1])/f \ &\downarrow \ &S^1 \end{aligned}$$

• Take a section $s: S^1 \to H_f^+$ s.t. $s \pitchfork$ (0-section).

► We will see

$$\#$$
reducibles $\equiv s^{-1}(0) \mod 2$.

⇒ H_f^+ is a trivial bundle. ⇒ f preserves the orientation of $H^+(X; \mathbb{R})$.

Nobuhiro Nakamura The Seiberg-Witten equations for families

Introduction The Seiberg-Witten equations on a family Applications to diffeomorphisms

Summary

- ► X: $b_1 = 0 \& b^+ = 1$.
- c: Spin^c-str. s.t. dim $\mathcal{M}_c = 0$.
- $f: X \to X$ ori. pres. diffeo. preserving c.

 \Rightarrow f preserves the orientation of $H^+(X; \mathbb{R})$.

More concretely,

Theorem

- X: $b_1 = 0$ & The intersection form $\cong E_8 \oplus H$.
- $f: X \rightarrow X$ ori. pres. diffeo. s.t.
 - 1. f preserves a class $C \in \text{Tor } H^2(X; \mathbb{Z})$ s.t. $C \to w_2(X) \mod 2$,
 - 2. $H^1(X; \mathbb{Z}_2)^{f^*} = 0.$

 \Rightarrow f preserves the orientation of $H^+(X; \mathbb{R})$.

Remarks

- The conditions 1. 2. \Rightarrow *f* preserves the Spin^{*c*}-str of *C*.
- This could be proved by an ordinary wall crossing argument.
- Cf. [Donaldson]
 If an ori. pres diffeo of X = K3 acts trivially on H²(X; Z₂)
 ⇒ it preserves the ori. of H⁺(X; ℝ).

The case when $d = b^+ = 2$

Let $B = T^2 \Rightarrow$ a constraint on commutative two diffeos.

(The precise statement will be given later.)

Nobuhiro Nakamura	The Seiberg-Witten equations for families
Introduction The Seiberg-Witten equations on a family Applications to diffeomorphisms	Spin ^c -structures on a family The Seiberg-Witten equations on a family Moduli spaces for a family

The Seiberg-Witten equations on a family

- X: an oriented closed 4-manifold, $b_1 = 0$.
- ► *B*: an oriented closed *d*-manifold.

$$X \qquad \qquad \downarrow X \quad \leftarrow \text{ a fiber bundle over } B \text{ with fiber } X \\ B$$

$$T(\mathbb{X}/B) = \prod_{b \in B} TX_b \quad \leftarrow \text{ the tangent bundle along fiber}$$

 $\bigvee \mathbb{R}^4$
 $\mathbb{X} = \prod_{b \in B} X_b$

Spin^c-structures on a family The Seiberg-Witten equations on a family Moduli spaces for a family

• Choose a metric on T(X/B). Then,

$$Fr \leftarrow \text{the frame bundle}$$

 $\downarrow SO(4)$
X.

A Spin^c-structure on T(X/B) is a lift of Fr to a Spin^c(4)-bundle P:

<i>Fr</i> ←	\mathbb{P}
$\int SO(4)$	$\int \operatorname{Spin}^{c}(4)$
\mathbb{X}	$\mathbb{X}.$

Nobuhiro Nakamura The Seiberg-Witten equations for families

Introduction	Spin ^c -structures on a family
The Seiberg-Witten equations on a family	The Seiberg-Witten equations on a family
Applications to diffeomorphisms	Moduli spaces for a family

Suppose a Spin^c-str. on T(X/B) is given.
 ⇒ By restriction, we have a Spin^c-str. on each fiber X_b.

$$\begin{array}{ccc} \mathbb{P} & & P_b := \mathbb{P}|_{X_b} \\ \downarrow & \Rightarrow & \downarrow \\ \mathbb{X} & & X_b \end{array}$$

Conversely, suppose a Spin^c-str. c on X is given.
 Want to construct a Spin^c-str. on T(X/B) from c.

In general \Rightarrow Not possible. Under some conditions \Rightarrow Possible.

Spin^c-structures on a family The Seiberg-Witten equations on a famil Moduli spaces for a family

Proposition

Suppose $C \in H^2(X;\mathbb{Z})$ and $\mathbb{X} \to B$ satisfy the following

- 1. $C \mapsto w_2(X)$ and $C \in H^2(X; \mathbb{Z})^{\pi_1(B)}$.
- 2. $H^3(B;\mathbb{Z}) = 0$
- 3. The mod 2 reduction $H^2(B; \mathbb{Z}) \to H^2(B; \mathbb{Z}_2)$ is surjective.
- 4. $H^1(B; \mathcal{H}) = 0$, where \mathcal{H} is the Serre local system of $H^1(X; \mathbb{Z}_2)$.
- $\Rightarrow \exists a \operatorname{Spin}^{c}$ -str on $T(\mathbb{X}/B)$ s.t. $c_{1}(\det \mathbb{P}|_{X_{b}}) = C$.

Nobuhiro Nakamura The Seiberg-Witten equations for families

Introduction	Spin ^c -structures on a family
The Seiberg-Witten equations on a family	The Seiberg-Witten equations on a family
Applications to diffeomorphisms	Moduli encode for a family
Applications to diffeomorphisms	Moduli spaces for a family

The idea of proof

To Do = To construct an integral lift \tilde{c} of $w_2(T(\mathbb{X}/B))$.

▶ If $b_1 = 0$, $E_2^{p,1} = 0$, $\forall p$ in \mathbb{Z} -coefficient, then

$$0 \to H^2(B;\mathbb{Z}) \to H^2(\mathbb{X};\mathbb{Z}) \to H^2(X;\mathbb{Z})^{\pi_1(B)} \to H^3(B;\mathbb{Z}).$$

By the assumption (4) H¹(B; H) = E₂^{1,1} = 0 in ℤ₂-coefficient, we have,

$$H^1(X;\mathbb{Z}_2)^{\pi_1(B)} o H^2(B;\mathbb{Z}_2) o H^2(\mathbb{X};\mathbb{Z}_2) o \mathsf{Ker} \, d_3.$$

Compare these exact sequences.

The Seiberg-Witten equations on a family

Fix a class C ∈ H²(X; Z) as in Proposition,
 & fix a Spin^c-str. č on T(X/B) associated to C.

 S^{\pm} : posi./nega. spinor bundles.L: the determinant line bundle. \downarrow \downarrow XX

► *L* is viewed as a family over *B*:

$$L = \coprod_{b \in B} L_b$$
$$\downarrow$$
B

► $\mathcal{A}(L_b) := {U(1) - \text{connections on } L_b}.$

Nobuhiro Nakamura	The Seiberg-Witten equations for families
Introduction	Spin [°] -structures on a family
The Seiberg-Witten equations on a family	The Seiberg-Witten equations on a family
Applications to diffeomorphisms	Moduli spaces for a family

► The bundle of parameters:

$$\Pi := \{ (g_b, \mu_b) \in Met(X_b) \times \Omega^2(X_b) \mid *_{g_b} \mu_b = \mu_b \}$$
$$\downarrow$$
$$B$$

• Choose a section $\eta \colon B \to \Pi$.

The Seiberg-Witten equations for $\{(A_b, \psi_b)\} \in \coprod \mathcal{A}(L_b) \times \Gamma(S_b^+)$.

$$(SW_b) \begin{cases} D_{A_b}\psi = 0, \\ F_{A_b}^{+g_b} = (\psi_b \otimes \psi_b^*)_0 + i\mu_b, \end{cases}$$

where

- D_{A_b} : $\Gamma(S_b^+) \to \Gamma(S_b^-)$, the Dirac operator,
- $F_{A_b}^{+g_b}$: the g_b -self-dual part of the curvature of A_b ,
- $(\psi_b \otimes \psi_b^*)_0$: the trace free part of $\psi_b \otimes \psi_b^* \in \Gamma(End(S_b^+))$ identified with *i*-valued 2-form via the Clifford multiplication.

Nobuhiro Nakamura	The Seiberg-Witten equations for families
Introduction	Spin^{c} -structures on a family
The Seiberg-Witten equations on a family	The Seiberg-Witten equations on a family
Applications to diffeomorphisms	Moduli spaces for a family

The gauge transformation group

$$\mathcal{G}_b := \mathsf{Map}(X_b, S^1) \curvearrowright \mathcal{A}(L_b) \times \mathsf{\Gamma}(S_b^+),$$

$$u_b(A_b, \psi_b) = (A_b - 2u_b^{-1} du_b, u_b \psi_b).$$

- (SW_b) is \mathcal{G}_b -equivariant.
- \mathcal{G}_b -action is free where $\psi \neq 0$.
 - ightarrow A solution with $\psi \equiv$ 0 is called a *reducible*. The stabilizer $\cong S^1$

• Note
$$(A_b, 0)$$
 reducible $\Leftrightarrow F_{A_b}^{+g_b} = i\mu_b$.

• The Wall \mathcal{W} ,

$$\begin{aligned} \mathcal{W} := & \{ (g_b, \mu_b) \, | \, (SW_b) \text{ has a reducible solution } \} \\ &= & \{ (g_b, \mu_b) \, | \, P_{+_{g_b}}(2\pi C - \mu_b) = 0 \}, \end{aligned}$$

where $P_{+_{g_b}}$ is the orthogonal projection to g_b -self-dual harmonic part.

• $\Pi \supset \mathcal{W}$: codimension = $b^+(X)$.

Nobuhiro Nakamura	The Seiberg-Witten equations for families
	The benderg wheten equations for furnines

Introduction	Spin ^c -structures on a family
The Seiberg-Witten equations on a family	The Seiberg-Witten equations on a family
Applications to diffeomorphisms	Moduli spaces for a family

► The moduli space for the family,

$$\mathcal{M}_{\eta}(\mathbb{X}, \mathbb{P}) = \prod_{b \in B} \{ \text{ solutions to } (SW_b) \} / \mathcal{G}_b.$$

• The virtual dimension of $\mathcal{M}_{\eta}(\mathbb{X}, \mathbb{P})$:

$$d(C) = 2 \operatorname{ind}_{\mathbb{C}} D_A - (1 + b^+) + d$$

= $\frac{1}{4}(C^2 - \operatorname{Sign}(X)) - 1 - b_+ + d$

If η: generic,
 ⇒ M_η(X, P) \ {reducibles} becomes a d(C)-dim. manifold.

Spin^c-structures on a family The Seiberg-Witten equations on a family Moduli spaces for a family

Recall the situation:

$$\Pi \supset \mathcal{W} \leftarrow \text{codimension} = b^+(X)$$
$$\eta \uparrow \downarrow$$
$$B^d$$

b₁ = 0.
 ⇒ When η intersects W, a reducible appears in M_η(X, P).

$$\eta \cap \mathcal{W} \stackrel{1:1}{\longleftrightarrow} \{ \mathsf{reducibles} \} \subset \mathcal{M}_\eta(\mathbb{X}, \mathbb{P})$$

Nobuhiro Nakamura The Seiberg-Witten equations for families

Introduct	ion Spin ^c -structures on a family
The Seiberg-Witten equations on a fam	nily The Seiberg-Witten equations on a family
Applications to diffeomorphis	Moduli spaces for a family

▶ To see $\eta \cap \mathcal{W}$, introduce

$$egin{aligned} & H^+_\eta \subset \Omega^2(\mathbb{X}/B) \ & \downarrow \ & B, \end{aligned}$$
 (The fiber over $b \in B$) = { g_b -self-dual harmonic 2-forms} $&= H^{+_{g_b}}(X_b). \end{aligned}$

• Define the section $s_\eta \colon B \to H_\eta^+$ by

$$egin{aligned} s_\eta(b) &:= P_{+_{g_b}}(2\pi C - \mu_b). \ & & & & \ \eta \cap \mathcal{W} \xleftarrow{1:1} s_\eta^{-1}(0) \end{aligned}$$

Spin^c-structures on a family The Seiberg-Witten equations on a fami Moduli spaces for a family

Now suppose

•
$$\eta$$
: generic $\Rightarrow \mathcal{M}_{\eta}(\mathbb{X}, \mathbb{P}) \setminus \{\text{reducibles}\} \text{ is a } d(C)\text{-manifold}.$

Note

$$\eta \cap \mathcal{W} \stackrel{1:1}{\longleftrightarrow} s_{\eta}^{-1}(0) \stackrel{1:1}{\longleftrightarrow} \{ \text{reducibles} \}$$

Theorem

If $d(C) > 0 \& d(C) \equiv 1 \mod 4$,

$$\Rightarrow \# s_{\eta}^{-1}(0) = \# \{ reducibles \} \text{ is even.}$$

Nobuhiro Nakamura The Seiberg-Witten equations for families

Introduction	Spin ^c -structures on a family
The Seiberg-Witten equations on a family	The Seiberg-Witten equations on a family
Applications to diffeomorphisms	Moduli spaces for a family

For the proof, we need to analyse the situation around a reducible, \rightarrow use the Kuranishi model.

The Kuranishi model

- Suppose $x = (A_0, 0)$ is a reducible solution over $b_0 \in B$.
- ▶ For simplicity, suppose $g_b = g_{b_0}$ on a small nbd $U \subset B$ of b_0 .
- The slice of \mathcal{G} -action at $x = (A_0, 0)$ is given by

$$T_{x} := \{ (b, a, \phi) \in U \times i \operatorname{ker} d^{*} \times \Gamma(S^{+}) | \|a\| \& \|\phi\| : \text{ small} \}.$$

 $Spin^{c}$ -structures on a family The Seiberg-Witten equations on a family Moduli spaces for a family

• Let us consider the following S^1 -equiv. map:

$$\Psi: T_{x} \to i\Omega^{+}(X) \times \Gamma(S^{-}),$$

(b, a, ϕ) $\mapsto (F^{+}_{A_{0}+a} - (\phi \otimes \phi^{*})_{0} + i\mu_{b}, D_{A_{0}+a}\phi).$

Then

$$\Psi^{-1}(0)/S^1 \cong (a \text{ nbd. of } x) \subset \mathcal{M}(\mathbb{X}, \mathbb{P}).$$

Ψ is a non-linear Fredholm map.
 ⇒ The differential DΨ at 0 is written as

$$(D\Psi)_0 \colon F \oplus V \to G \oplus W,$$

where F, G are finite dimensinal subspaces, and $L := (D\Psi)_0|_V : V \to W$ is a linear isomorphism.

Nobuhiro Nakamura The Seiberg-Witten equations for families

Introduction	${ m Spin}^{\sf c}$ -structures on a family
The Seiberg-Witten equations on a family	The Seiberg-Witten equations on a family
Applications to diffeomorphisms	Moduli spaces for a family

• Let p_G , p_W be orthogonal projections from $G \oplus W$ to G, W. $\Rightarrow p_W \circ (D\Psi)_0$ is surjective.

 $\Rightarrow \exists f$: a diffeo from a nbd of 0 to another nbd s.t.

$$p_W \circ \Psi \circ f = p_W \circ (D\Psi)_0,$$

by the implicit function theorem.

• Finally, Ψ can be identified locally with a map

$$\Psi' \colon F \times V \to G \times W,$$
$$(u, v) \mapsto (\alpha(u, v), L(v)),$$

where L is a linear isomorphism, and $(D\alpha)_0 = 0$.

► Then $f: F \to G, f(u) = \alpha(u, 0)$ gives a finite dim model for Ψ s.t. $\Psi^{-1}(0) \cong f^{-1}(0)$ locally. (The Kuranishi model)

 In our situation, Ψ is S¹-equivariant, & all of constructions above can be carried out S¹-equivariantly.

$$\Rightarrow f^{-1}(0)/S^1 \cong \Psi^{-1}(0)/S^1 \cong (a \text{ nbd of } x) \subset \mathcal{M}(\mathbb{X}, \mathbb{P}).$$

▶ Then, explicitly, *f* could be:

$$f: \mathbb{R}^{b^+} \times \operatorname{Ker} D_{A_0} \to \operatorname{Coker} D_{A_0} \times H^+,$$

where S^1 acts on Ker D_{A_0} & Coker D_{A_0} by multiplication, on \mathbb{R}^{b^+} & H^+ trivially.

• $\eta \pitchfork \mathcal{W} \Rightarrow \mathbb{R}^{b^+} \times \{0\}$ is isomorphically mapped to $\{0\} \times H^+$.

If necessary, perturb the Dirac equation,

$$\Rightarrow (a nbd of x) \cong f^{-1}(0)/S^1 \cong \mathbb{C}^k/S^1 \cong c \mathbb{C}\mathsf{P}^{k-1},$$

where $k = \operatorname{ind}_{\mathbb{C}} D_{A_0}$.

Nobuhiro Nakamura The Seiberg-Witten equations for families

Introduction	Spin ^c -structures on a family
The Seiberg-Witten equations on a family	The Seiberg-Witten equations on a family
Applications to diffeomorphisms	Moduli spaces for a family

Now, let us prove,

Theorem If $d(C) > 0 \& d(C) = 2k - 1 \equiv 1 \mod 4$,

$$\Rightarrow \# s_{\eta}^{-1}(0) = \# \{ reducibles \}$$
 is even.

Proof

- $\mathcal{M}(\mathbb{X}, \mathbb{P}) \setminus \{\text{reducibles}\} \text{ is a } d(C)\text{-dim. manifold.}$
- The nbd of each reducible $\cong c \mathbb{C}P^{(d(C)-1)/2}$.
- Remove cones from $\mathcal{M}_{\eta}(\mathbb{X}, \mathbb{P})$.

$$\Rightarrow$$
 (boundary) = $\prod \mathbb{C}P^{\frac{d(C)-1}{2}}$.

 $Spin^{c}$ -structures on a family The Seiberg-Witten equations on a fami Moduli spaces for a family

In the unoriented cobordism group Ω⁴ⁿ, ℂP²ⁿ is non-trivial.
→ When $\frac{d(C)-1}{2} = 2n$, ⇔ $d(C) \equiv 1 \mod 4$

#(components of boundary) is even. $\|$ #(reducibles) $\|$ # $s_{\eta}^{-1}(0)$

Nobuhiro Nakamura	The Seiberg-Witten equations for families
Introduction	Spin^{c} -structures on a family
The Seiberg-Witten equations on a family	The Seiberg-Witten equations on a family
Applications to diffeomorphisms	Moduli spaces for a family

Remark 1 If $H^+_{\eta} \to B$ is orientable $\Rightarrow \mathcal{M}_{\eta}(\mathbb{X}, \mathbb{P})$ is orientable. \Rightarrow Can refine Theorem:

If d(C) > 0 & $d(C) \equiv 1 \mod 4 \Rightarrow \# s_{\eta}^{-1}(0) = 0$.

Spin^c-structures on a family The Seiberg-Witten equations on a fam Moduli spaces for a family

Remark 2 When $d(C) > 0 \& d(C) \equiv 3 \mod 4$, Theorem holds in some cases.

$$\mathcal{B}_b^* := \left[\mathcal{A}(L_b) \times (\Gamma(S_b^+) \setminus \{\psi_b \equiv 0\})\right] / \mathcal{G}_b.$$

- If $b_1 = 0 \Rightarrow \mathcal{B}_b^* \simeq \mathbb{C}\mathsf{P}^\infty \Rightarrow \exists U \in H^2(\mathcal{B}_b; \mathbb{Z}).$
- If U has a lift Ũ ∈ H²(∐B^{*}_b) ⇒ Theorem holds.
 (∵) A component of the boundary is CP^{2k+1}. Evaluate [CP^{2k+1}] by Ũ^{2k+1}.

Nobuhiro Nakamura	The Seiberg-Witten equations for families
Introduction The Seiberg-Witten equations on a family Applications to diffeomorphisms	The case when $d=b^+=1$ The case when $d=b^+=2$

Applications to diffeomorphisms

- The case when $d = b^+ = 1$.
- The case when $d = b^+ = 2$.

The case when $d = b^+ = 1$ The case when $d = b^+ = 2$

The case when $d = b^+ = 1$

Theorem

- X: closed, oriented, $b_1 = 0$.
- The intersection form $\Psi_X \cong E_8 \oplus H$. $\Rightarrow \exists C \in \text{Tor } H^2(X; \mathbb{Z}) \text{ s.t. } C \mapsto w_2(X) \text{ mod } 2.$
- $f: X \rightarrow X$ ori. pres. diffeo. s.t.
 - 1. f preserves a class $C \in \text{Tor } H^2(X;\mathbb{Z})$ s.t. $C \to w_2(X) \mod 2$,
 - 2. $H^1(X; \mathbb{Z}_2)^{f^*} = 0.$
- \Rightarrow f preserves the orientation of $H^+(X; \mathbb{R})$.

Nobuhiro Nakamura The Seiberg-Witten equations for families

Introduction	The case when $d = b^+ = 1$
The Seiberg-Witten equations on a family	The case when $d = b^+ = 2$
Applications to diffeomorphisms	I he case when $d = b^{+} = 2$

Proof

Consider the mapping torus:

$$\mathbb{X} := (X imes [0,1])/f o S^1$$

▶ By 1 and 2, $\exists \operatorname{Spin}^{c}$ -str. \tilde{c} on \mathbb{X} s.t. $c_{1}(\det \mathbb{P}|_{X}) = C$. ⇒ The SW-moduli for \tilde{c} .

$$d(C) = \frac{1}{4}(C^2 - \operatorname{Sign}(X)) - 1 = \frac{1}{4}(0 - (-8)) - 1 = 1.$$

- By Theorem, $\#s_{\eta}^{-1}(0) \equiv 0 \mod 2$.
- ▶ If *f* reverse the ori. of H^+ $\Rightarrow H^+_{\eta} \rightarrow S^1$ is a nontrivial \mathbb{R} -bundle. \Rightarrow A Contradiction. \square

Remark

If X = Enriques surface, $\Rightarrow \Psi_X \cong E_8 \oplus H$. But No diffeo can satisfy 2. $H^1(X; \mathbb{Z}_2)^{f^*} = 0$. $(::)H^1(X; \mathbb{Z}_2) \cong \mathbb{Z}_2$.

Corollary

X: Enriques,

- N: a rational homology 4-sphere s.t. $H^1(N; \mathbb{Z}_2) \neq 0$.
- X' = X # N.
- \Rightarrow No diffeo f : $X' \rightarrow X'$ satisfying the following at the same time:
 - 1. f preserves a class $C \in \text{Tor } H^2(X; \mathbb{Z})$ s.t. $C \mapsto w_2(X) \mod 2$,
 - 2. $H^1(X; \mathbb{Z}_2)^{f^*} = 0.$
 - 3. f reverses the orientation of $H^+(X; \mathbb{R})$.

Nobuhiro Nakamura	The Seiberg-Witten equations for families

Introduction The Seiberg-Witten equations on a family Applications to diffeomorphisms	The case when $d=b^+=1$ The case when $d=b^+=2$

The case when $d = b^+ = 2$

Theorem

X: $b_1 = 0$ & $\Psi_X \cong E_8 \oplus H \oplus H$. f,g: X → X, ori. pres. diffeos s.t. $f \circ g = g \circ f$. ⇒ The following can not hold at the same time:

- 1. f and g preserve a class $C \in \text{Tor } H^2(X; \mathbb{Z})$ s.t. $C \mapsto w_2(X)$.
- 2. $f^*, g^* \colon H^1(X; \mathbb{Z}_2) \to H^1(X; \mathbb{Z}_2),$

$$\operatorname{rank} \begin{pmatrix} \operatorname{Id} - g_* \\ -(\operatorname{id} - f^*) \end{pmatrix} = \operatorname{dim} H^1(X; \mathbb{Z}_2).$$

3. \exists positive definite subspace $H^+ \subset H^2(X; \mathbb{R})$ which decomposes $H^+ \cong \mathbb{R} \oplus \mathbb{R}$ on which

$$f^* = (-1) \oplus (+1), \ g^* = (+1) \oplus (-1).$$

Proof

Let us consider the "double" mapping torus:

$$\mathbb{X} := (X \times [0,1] \times [0,1])/f, g$$

 \downarrow
 T^2 .

- ▶ If 1. & 2., $\Rightarrow \exists \operatorname{Spin}^{c}\operatorname{-str.} \tilde{c}$ on \mathbb{X} . \Rightarrow The SW-moduli for \tilde{c} .
- ► d(C) = 1 : $\#s_{\eta}^{-1}(0) \equiv 0 \mod 2$.

Nobuhiro Nakamura The Seiberg-Witten equations for families

The Seiberg-Witten equations on a family Applications to diffeomorphisms

▶ If 3. holds, then

$$\begin{array}{c} H_{\eta}^{+} = & \pi_{1}^{*}E \oplus \pi_{2}^{*}E \\ \downarrow & & \downarrow \\ T^{2} = & S^{1} \times S^{1}, \end{array}$$

where

•
$$\pi_i \colon S^1 \times S^1 \to S^1$$
, the *i*-th projection,
• $E \to S^1$, a nontrivial \mathbb{R} -bundle.
• $w_2(H_\eta^+) \neq 0$. \to Contradicts with $\#s_\eta^{-1}(0) \equiv 0 \mod 2$.

Remark

In this case, the fiberwise dimension of the moduli is -1.

Question

How about the following cases?

▶ $d = b^+ = 2 \& B \neq T^2$.

▶
$$d = b^+ \ge 3$$
.

►
$$d > b^+$$
.

▶ $b_1 > 0$.

Nobuhiro Nakamura The Seiberg-Witten equations for families