Smoothability of $\mathbb{Z}\times\mathbb{Z}\text{-actions}$ on 4-manifolds

Nobuhiro Nakamura

The University of Tokyo

January 20, 2010

Main results

- ▶ *E*: Enriques surface, \rightarrow non-spin, $\pi_1 \cong \mathbb{Z}/2$, $E_8 \oplus H$, $b^+ = 1$
- $\blacktriangleright X := E \# (S^2 \times S^2).$

We will explain:

 \exists Nonsmoothable $\mathbb{Z} \times \mathbb{Z}$ -action on X s.t. each of the generators is smoothable.

Main Theorem

There exist two self-homeomorphisms $f_1, f_2 \colon X \xrightarrow{\cong} X$ s.t.

- 1. f_1 and f_2 commute: $f_1 \circ f_2 = f_2 \circ f_1$.
- 2. Each one of f_1 and f_2 can be smoothed for some smooth structure on X.
- 3. However, f_1 and f_2 can not be smoothed at the same time for any smooth structure on X.

We will also talk about

Theorem 2

Let Y be an Enriques surf.

Then, \exists self-homeomorphism $f: Y \to Y$ which is nonsmoothable for any smooth structure on Y.

Nobuhiro Nakamura	Smoothability of $\mathbb{Z} imes \mathbb{Z}$ -actions on 4-manifolds
The statement of results Proof of Theorem 2 Proof of Main theorem Seiberg-Witten moduli spaces for families	Main results The strategy of proofs

The strategy of proofs

The proofs will be divided into 2-steps:

- ▶ Give constraints on diffeomorphisms.
 → Seiberg-Witten gauge theory on families.
- Construct homeomorphisms which violate the constraints.
 Use a result of Hambleton-Kreck that an Enriques surface *E* has a topological splitting:

$$E \cong_{\text{homeo.}} E' \# (S^2 \times S^2).$$

The statement of results

Main results The strategy of proofs

Proof of Theorem 2

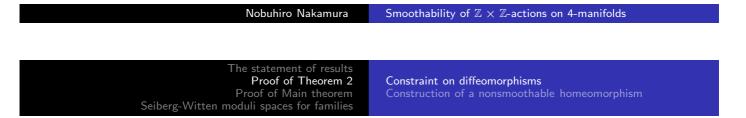
Constraint on diffeomorphisms Construction of a nonsmoothable homeomorphism

Proof of Main theorem

Constraint on pairs of diffeomorphisms Construction of a nonsmoothable action

Seiberg-Witten moduli spaces for families

Proof of Proposition 1 Proof of Proposition 2



Proof of Theorem 2

Part 1: Constraint on diffeomorphisms

By Seiberg-Witten gauge theory, we can prove:

Proposition 1

- ► Y: a smooth 4-manifold homeo. to an Enriques surface.
- c: a Spin^c-structure on Y whose c_1 is a torsion class.
- $f: Y \rightarrow Y$, an orintation preserving diffeomorphism.

If $f^*c \cong c$, then f preserves the orientation of $H^+(Y; \mathbb{R})$.

Cf. [Donaldson]

Every ori. pres. diffeo. of K3 preserves the ori. of $H^+(K3; \mathbb{R})$.

Proof of Theorem 2

Part 2: Construction of a nonsmoothable homeomorphism

By Proposition 1, a homeomorphism of an Enriques surf.

- $f: Y \to Y$ is nonsmoothable if
 - $f^*c \cong c$, where c is a torsion Spin^c-structure,
 - f reverses the ori. of $H^+(Y)$.



Theorem [Hambleton-Kreck'88]

An Enriques surface is homeomorphic to $\Sigma \# |E_8| \# (S^2 \times S^2)$, where

- Σ is a nonspin rational homology 4-sphere with $\pi_1 = \mathbb{Z}/2$.
- |E₈| is a simply-connected topological 4-manifold whose intersection form is the negative definite E₈.

Remark

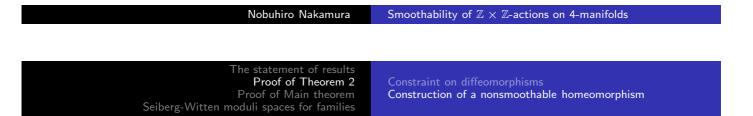
Neither Σ nor $|E_8| \# (S^2 \times S^2)$ is smoothable.

Construction of a nonsmoothable homeomorphism

Step 1. Choose an ori. pres. self-diffeo. $\varphi: S^2 \times S^2 \to S^2 \times S^2$ s.t.

- ▶ $\exists 4\text{-ball } B_0 \subset S^2 \times S^2 \text{ s.t. } \varphi|_{B_0} = \text{id.}$
- φ reverses the ori. of $H^+(S^2 \times S^2)$.

Ex. Assume $S^2 \times S^2 = \mathbb{C}P^1 \times \mathbb{C}P^1$. Let φ_0 be the complex conjugation on $\mathbb{C}P^1 \times \mathbb{C}P^1$. To obtain a required φ , perturb φ_0 around a fixed point.



Step 2. Define a self-homeomorphism f of $\Sigma \# |E_8| \# (S^2 \times S^2)$ by

 $f = (\mathrm{id}_{\Sigma \# |E_8|}) \# \varphi.$

Note that f reverses the ori. of H^+ . Then, Theorem 2 is proved by the following:

Claim

For a torsion Spin^c-structure c, $f^*c \cong c$.

Here, c is assumed as a topological Spin^c-structure.

Proof

- Note $c = c' \# c_0$, where
 - c' is a torsion Spin^c str. on $\Sigma \# |E_8|$, and
 - c_0 is the unique spin str. on $S^2 \times S^2$.
- $f|_{\Sigma \# |E_8|} = \operatorname{id}_{\Sigma \# |E_8|}$ fixes c'.
- $f|_{S^2 \times S^2}$ preserves c_0 .

Π

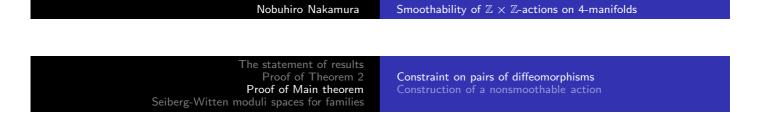
Proof of Main theorem

Part 1: Constraint on pairs of diffeomorphisms

- Let X be a smooth 4-manifold homeo. to E#(S² × S²), where E: Enriques.
- Suppose two diffeo. f_1 , $f_2 : X \to X$ s.t $f_1 \circ f_2 = f_2 \circ f_1$ are given.
- \Rightarrow Can construct a "double mapping torus" $X_{(f_1, f_2)} \rightarrow T^2$ as

$$X_{(f_1,f_2)} = X \times [0,1] \times [0,1]/(f_1,f_2).$$

• Choose a smooth family of metrics $\{g_b\}_{b \in T^2}$ on $X_{(f_1, f_2)}$, where g_b is a Riemannian metric on the fiber X_b over $b \in T^2$.



• Define an
$$\mathbb{R}^2$$
-vector bundle $H^+_{(f_1,f_2)} o T^2$ by

$$H^+_{(f_1,f_2)} = \prod_{b \in T^2} H^{+_{g_b}},$$

where H^{+g_b} is the space of g_b -self-dual harmonic 2-forms on X_b .

Roughly speaking,

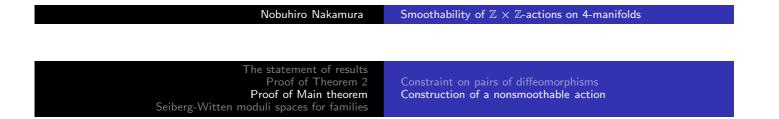
$$H^+_{(f_1,f_2)} = H^+(X) \times [0,1] \times [0,1]/(f_1^*,f_2^*).$$

Proposition 2

Let c be a torsion Spin^c-structure on X. If $f_i^* c \cong c$ for i = 1, 2, then

$$w_2\left(H^+_{(f_1,f_2)}\right)=0.$$

Remark Proposition 1 can be stated as: Proposition 1' If $f^*c \cong c$, then $w_1(H_f^+) = 0$. (Roughly, $H_f^+ = H^+(Y, \mathbb{R}) \times [0, 1]/f^*$.)



Part 2: Construction of a nonsmoothable $\mathbb{Z}\times\mathbb{Z}\text{-action}$

- For i = 1, 2, let (S_i, φ_i) be copies of $(S^2 \times S^2, \varphi)$.
- Let $X := S_1 \# (\Sigma \# |E_8|) \# S_2$.
- Note that (Σ#|E₈|)#S_i (i = 1,2) is homeomorphic to an Enriques surf E.
- Then, X can be smoothed in two ways as

$$X \cong E \# S_2, \quad X \cong S_1 \# E.$$

The basic idea of construction of f_1 , f_2 is as follows:

$$\begin{aligned} X &:= S_1 \# (\Sigma \# |E_8|) \# S_2, \\ f_1 &:= \varphi_1 \# \operatorname{id}_{(\Sigma \# |E_8|)} \# \operatorname{id}_{S_2}, \\ f_2 &:= \operatorname{id}_{S_1} \# \operatorname{id}_{(\Sigma \# |E_8|)} \# \varphi_2. \end{aligned}$$

The precise definition is slightly complicated.

Lemma 1 f_1 is smoothable for $X \cong S_1 \# E$. f_2 is smoothable for $X \cong E \# S_2$.

By Proposition 2, at least one of f_1 . f_2 should be nonsmoothable if

(1)
$$f_i^* c \cong c$$
 $(i = 1, 2)$, and
(2) $w_2 \left(H_{(f_1, f_2)}^+ \right) \neq 0.$

(1) can be easily seen as before. For (2), by construction, $H^+_{(f_1,f_2)} \to S^1 \times S^1$ can be written as

$$H^+_{(f_1,f_2)}\cong p_1^*\eta\oplus p_2^*\eta,$$

where $\eta \to S^1$ is a nontrivial line bundle, and $p_i: S^1 \times S^1 \to S^1$ is the *i*-th projection.

Thus, $w_2(H^+_{(f_1,f_2)}) \neq 0.$

Nobuhiro Nakamura Smoothability of $\mathbb{Z} \times \mathbb{Z}$ -actions on 4-manifolds

Seiberg-Witten moduli spaces for families

- X: a closed ori. smooth 4-manifold with $b_1 = 0$.
- c: a Spin^c-structure on X, $L = \det c$.
- ▶ g: a Riemannian metric.
- Fix a g-self-dual 2-form $\mu \in \Omega^{+g}(X)$.

The Seiberg-Witten equations for the parameter (g, μ)

$$(SW) \begin{cases} D_A \psi = 0, \\ F_A^{+g} = (\psi \otimes \psi^*)_0 + i\mu, \end{cases}$$

where

- A: U(1)-connection on $L = \det c$,
- ψ : positive spinor.

Nobuhiro Nakamura	Smoothability of $\mathbb{Z} \times \mathbb{Z}$ -actions on 4-manifolds
The statement of results Proof of Theorem 2 Proof of Main theorem Seiberg-Witten moduli spaces for families	Proof of Proposition 1 Proof of Proposition 2

The moduli space

$$\mathcal{M} = \mathcal{M}(X, c, g, \mu) = \{ \text{ solutions of (SW) } \}/\mathcal{G},$$

where $\mathcal{G} = Map(X, S^1)$ is the gauge transformation group.

Properties

- \mathcal{M} is compact.
- ► For a generic choice of (g, µ), M becomes a d(c)-dim. manifold except quotient singularities(=reducibles), where

$$d(c) = \frac{1}{4}(c_1(L)^2 - \operatorname{Sign}(X)) - (1 - b_1 + b^+).$$

• If X : Enriques & c : a torsion Spin^c-str. $\Rightarrow d(c) = 0$.

Proof of Proposition 1 Proof of Proposition 2

Proof of Proposition 1

- Let X : Enriques & c : a torsion Spin^c-str. $\Rightarrow d(c) = 0$.
- Suppose an ori. pres. diffeo $f: X \to X$ s.t. $f^*c \cong c$ given.
- Consider the mapping torus $X_f = (X \times [0,1])/f \rightarrow S^1$.
- A family of Spin^c-structure $c_f = (c \times [0, 1])/f^*$.
- ▶ For $b \in S^1$, let (X_b, c_b) be the fibre of $(X_f, c_f) \rightarrow S^1$ over b.
- ► The bundle of parameters:

$$egin{aligned} &\Pi := \{(g_b,\mu_b) \in \mathit{Met}(X_b) imes \Omega^2(X_b) \mid *_{g_b} \mu_b = \mu_b\} \ &\downarrow \ &S^1 \end{aligned}$$

• Choose a section $\eta: S^1 \to \Pi$. \Rightarrow A family of SW-eqn. on (X_f, c_f) .

Nobuhiro Nakamura	Smoothability of $\mathbb{Z} imes \mathbb{Z}$ -actions on 4-manifolds
The statement of results Proof of Theorem 2 Proof of Main theorem Seiberg-Witten moduli spaces for families	Proof of Proposition 1 Proof of Proposition 2

• The moduli space for the family (X_f, c_f) :

$$\mathcal{M}(X_f, c_f, \eta) = \prod_{b \in S^1} \mathcal{M}(X_b, c_b, g_b, \mu_b).$$

▶ For generic η, M(X_f, c_f, η) becomes a (d(c) + 1)-dim. compact manifold outside reducibles.

The statement of results Proof of Theorem 2 Proof of Main theorem Seiberg-Witten moduli spaces for families	Proof of Proposition 1 Proof of Proposition 2
--	---

Question Where do reducibles appear?

 $\mathcal{M}(X_b, c_b, g_b, \mu_b)$ contains a reducible \leftrightarrow A condition for (g_b, μ_b) .

• Let us introduce an \mathbb{R} -line bundle $H_f^+ \to S^1$ by

$$H_f^+ = \coprod_{b \in S^1} H^{+_{g_b}},$$

where H^{+g_b} is the space of g_b -self-dual harmonic 2-forms.

• Define the section $s_\eta \colon S^1 o H^+_f$ by

$$s_{\eta}(b):=P^{+_{g_b}}(2\pi c_1(L)-\mu_b),$$

where P^{+g_b} is the projection to g_b -self-dual harmonic part, and $c_1(L)$ is assumed as a harmonic 2-form.

Lemma

• $s_{\eta}(b) = 0 \Leftrightarrow \mathcal{M}(X_b, c_b, g_b, \mu_b)$ contains a reducible. In fact,

$$s_{\eta}^{-1}(0) \xleftarrow{1:1}{\longleftrightarrow} \{ \text{ reducibles } \}$$

• η : generic $\Rightarrow s_{\eta} \pitchfork$ (0-section).

Proof of Proposition 1

#{ boundaries } = #{ reducibles } = # $s_{\eta}^{-1}(0)$ is even $\Rightarrow H_f^+$ is a trivial line bundle . $(w_1(H_f^+) = 0.)$ $\Rightarrow f$ preserves the ori. of $H^+(X)$.

Nobuhiro Nakamura	Smoothability of $\mathbb{Z}\times\mathbb{Z}\text{-}actions$ on 4-manifolds
The statement of results Proof of Theorem 2 Proof of Main theorem Seiberg-Witten moduli spaces for families	Proof of Proposition 1 Proof of Proposition 2

Proof of Proposition 2

- Let $X := E \# (S^2 \times S^2)$, c: a torsion Spin^c-str. $\Rightarrow d(c) = -1$.
- Suppose two commutative ori. pres. diffeos $f_1, f_2 \colon X \to X$ s.t. $f_1^* c \cong f_2^* c \cong c$ given.
- Consider the "double" mapping torus

$$X_{(f_1,f_2)} = (X \times [0,1] \times [0,1])/(f_1,f_2) \to T^2.$$

Lemma

If $f_1^* c \cong f_2^* \cong c$, then \exists a Spin^c-str. \tilde{c} on $X_{(f_1, f_2)}$ s.t.

$$\widetilde{c}|_{X_b}\cong c \quad \text{ for } \forall b\in T^2.$$

► The bundle of parameters:

$$\Pi := \{ (g_b, \mu_b) \in \operatorname{Met}(X_b) \times \Omega^2(X_b) \mid *_{g_b} \mu_b = \mu_b \} \to T^2.$$

- Choose a section $\eta: T^2 \to \Pi$.
- The moduli space for the family $(X_{(f_1, f_2)}, \tilde{c})$:

$$\mathcal{M}(X_{(f_1,f_2)},\tilde{c},\eta)=\coprod_{b\in T^2}\mathcal{M}(X_b,c_b,g_b,\mu_b).$$

- For generic η, M(X_(f1,f2), č, η) becomes a (d(c) + 2)-dim. compact manifold outside reducibles.
- ▶ In our case, d(c) = -1

 $\Rightarrow \boxed{\begin{array}{c} \mathcal{M}(X_{(f_1,f_2)},\tilde{c},\eta) \text{ is a cpt 1-dim. manifold} \\ \text{with boundaries} = \text{reducibles.} \end{array}}$

Nobuhiro Nakamura	Smoothability of $\mathbb{Z} \times \mathbb{Z}\text{-actions}$ on 4-manifolds
The statement of results Proof of Theorem 2	Proof of Proposition 1
Proof of Main theorem	Proof of Proposition 2
Seiberg-Witten moduli spaces for families	

• Define an
$$\mathbb{R}^2$$
-vector bundle $H^+_{(f_1,f_2)} \to T^2$ by

$$H^+_{(f_1,f_2)}=\coprod_{b\in T^2}H^{+_{g_b}},$$

where H^{+g_b} is the space of g_b -self-dual harmonic 2-forms.

Lemma

▶ \exists a section s_{η} of $H^+_{(f_1, f_2)} \to T^2$ s.t.

$$s_{\eta}^{-1}(0) \stackrel{1:1}{\longleftrightarrow} \{ \text{ reducibles } \}$$

• η : generic $\Rightarrow s_{\eta} \pitchfork$ (0-section).

Proof of Proposition 2

$$#\{ \text{ boundaries } \} = #\{ \text{ reducibles } \} = #s_{\eta}^{-1}(0) \text{ is even}$$
$$\Rightarrow w_2(H_{(f_1, f_2)}^+) = 0.$$

Nobuhiro Nakamura	Smoothability of $\mathbb{Z} \times \mathbb{Z}$ -actions on 4-manifolds
The statement of results Proof of Theorem 2 Proof of Main theorem Seiberg-Witten moduli spaces for families	Proof of Proposition 1 Proof of Proposition 2

Final remark

▶ For an ori. closed smooth X^4 with intersection form I_X ,

Diff⁺(X) := { orientation preserving diffeomorphisms }, Homeo⁺(X) := { orientation preserving homeomorphisms }, $O = O(H_2) := \{ \text{ automorphisms of } H_2(X;\mathbb{Z}) \text{ preserving } I_X \}.$

We have homomorphisms

$$\psi \colon \operatorname{Diff}^+(X) \to O,$$

 $\phi \colon \operatorname{Homeo}^+(X) \to O.$

Problem Determine $\operatorname{im} \psi$ and $\operatorname{im} \phi$.

For X = K3, [Matumoto '85] im $\psi = O'$, where

 $O' = \{ \text{ automorphisms of } (H_2, I_X) \text{ preserving the ori. of } H^+ \}.$ O' is an index-2 subgroup of O.

[Freedman] im $\phi = O$.

For X = Enriques, [Lönne '98] $\operatorname{im} \psi = \operatorname{im} \phi = O$.

By Proposition 1 & Lönne's argument, we can prove the following:

For a $\operatorname{Spin}^{c}\operatorname{-str.} c$ on X,

$$\begin{split} \mathsf{Diff}^+(X,c) &:= \{ \text{ ori. pres. diffeomorphisms preserving } c \}, \\ \mathsf{Homeo}^+(X,c) &:= \{ \text{ ori. pres. homeomorphisms preserving } c \}, \\ \psi_c \colon \mathsf{Diff}^+(X,c) \to O, \\ \phi_c \colon \mathsf{Homeo}^+(X,c) \to O. \end{split}$$

Proposition

Let X be an Enriques surf. and c a torsion Spin^c-structure. Then im $\psi_c = O'$ and im $\phi_c = O$.