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Main Theorem
There exists a locally linear Z2-action on X = K3#K3 which can

not be smooth w.r.t. any smooth structure on X .
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Theorem (Liu-N. ’05-06)

There exist loc. lin. Zp-actions (p = 3, 5, 7) on K3 which can not

be smooth w.r.t. infinitely many smooth structures including the

standard.

The proof consists of 2-steps:

1. Existence: To construct loc. lin. actions concretely

→ Edmonds-Ewing’s realization theorem of loc. lin. actions.

2. Non-smoothable: To prove actions in 1. do not satisfy the
conditions to be smooth.

→ Seiberg-Witten gauge theory

Nobuhiro Nakamura Bauer-Furuta invariants and a non-smoothable involution



Introduction
Preliminaries and Overview

Construction of a non-smoothable action
The proof of the vanishing theorem

Non-smoothability

Gauge theory → Constraints on smooth actions
→ Non-smoothable

◮ Mod p vanishing theorem [Fang] ([N.])

Some conditions on fixed point data ⇒ SWX (c) ≡ 0 mod p.

◮ SWK3(c0) = 1 for the spin structure c0.
⇒ Not “(some conditions)”.

◮ But we can not use this method when SWX ≡ 0.

◮ Bauer and Furuta defined a stable cohomotopy refinement of
SW-invariants. → Bauer-Furuta invariants

e.g. X = K3#K3⇒SWX ≡ 0 but BFX 6≡ 0.
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Question

1. Does “mod p vanishing theorem” for BF-inv. hold?

2. Can we construct a non-smoothable action on K3#K3?

→ Yes for both 1. and 2.

1. A vanishing theorem of BF-inv. under involutions

2. Main Theorem
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As a byproduct, we also have;

Theorem
There exists a loc. lin. Z2-action on X = K3 s.t.

1. XZ2 : discrete

2. bZ2
+ := dimH+(X ; R)Z2 = 3.

3. nonsmoothable for any smooth structure.

Cf. [Bryan, ’98] For smooth Z2-actions on K3,

◮ XZ2 : discrete & bZ2
+ = 3,

or

◮ dimXZ2 = 2 & b
Z2
+ = 1.
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Preliminaries

Definition
G : a finite group, X : a n-dim. C 0-manifold.
A topological G -action on X is called locally linear
if ∀x ∈ X , ∃Vx : a Gx -invariant nbd. of x , (Gx : isotropy group of x .)

s.t.

◮ Vx
∼= Rn,

◮ Gx acts on Rn in linear orthogonal way.

In general,

smooth ⇒ locally linear

:
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Non-smoothable G -actions

X : a C 0-manifold,
Xσ ← a smooth structure σ specified.

LL(G ,X ) := {loc. lin. G -actions on X}/ ∼homeo ,

C∞(G ,Xσ) := {smooth G -actions on Xσ}/ ∼diffeo .

ϕσ : C∞(G ,Xσ)→ LL(G ,X ) →forgetting the smooth structure

Definition
A loc. lin. G -action on X is

◮ non-smoothable w.r.t. σ if (Its class) 6∈ im ϕσ ,

◮ smoothable w.r.t. σ if (Its class) ∈ im ϕσ.
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Fact
If n = dimX ≤ 3 ⇒ No non-smoothable loc. lin. action.
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n = 4

∃ Many examples of non-smoothable actions.

1. [Kwasik-Lee ’88] G = Z2 y X : a closed smooth 4-manifold.

2. [Kwasik-Lawson ’93]
G = Zp (p: prime)y X : contractible s.t.
∂X = Σ(a, b, c): Brieskorn.

3. [Hambleton-Lee ’95] G = Z5 y X = CP2 # CP2.

4. [Bryan ’98] G = Z2 y X = K3.

5. [Kiyono ’04] G = Zp (p: prime)y X = #S2 × S2.

6. [Liu-N ’05-06] G = Zp (p = 3, 5, 7)y X = E (n).

7. [Chen-Kwasik ’07] ∃family of symplectic exotic K3 s.t.
∀nontrivial odd order loc. lin. actions are non-smoothable.

8. [N. ’07] G = Z2 y X = K3#K3.
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Construction of a non-smoothable Z2-action on K3#K3

◮ A vanishing theorem of Bauer-Furuta invariants under
Z2-actions

◮ A constraint on smooth Z2-actions on K3#K3

◮ Edmonds-Ewing’s construction of loc. lin. actions.

◮ Construction of a non-smoothable Z2-action
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A vanishing theorem of Bauer-Furuta invariants under

Z2-actions
Suppose

◮ G = Z2 acts on a smooth closed oriented X 4 smoothly.

◮ the Z2-action lifts to a Spinc -structure c .

Fix a Z2-invariant metric

and a Z2-invariant connection A0 on the determinant line bundle L.

→ DA0
: Γ(S+)→ Γ(S−) Z2-equivariant Dirac operator.

Then,

indZ2
DA0

= k+C+ + k−C− ∈ R(Z2) ∼= Z[t]/(t2 − 1),

where

- Z2 acts on C+ trivially,

- Z2 = {±1} acts on C− by multiplication.
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Theorem (Vanishing theorem of BF)

Suppose

1. b1 = 0, b+ ≥ 2, bZ2
+ = dimH+(X ; R)Z2 ≥ 1.

2. d(c) := 2(k+ + k−)− (1 + b+) = 1.

3. 2k± < 1 + bZ2
+ .

4. b+ − bZ2
+ is odd.

Then BF(c) = 0.

Remark

◮ d(c) is the virtual dimension of the SW-moduli for c.

◮ When d(c) = 1,
◮ k+ + k−: even ⇒ BF (c) ∈ Z/2.
◮ k+ + k−: odd ⇒ BF (c) = 0.
◮ always SWX (c) = 0.
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A constraint on smooth actions on K3#K3

Suppose

◮ X : smooth, closed, oriented, spin, π1(X ) = 1.

◮ Z2 y X smoothly.

If XZ2: discrete ⇒ the Z2-action lifts to the spin c0.

Nobuhiro Nakamura Bauer-Furuta invariants and a non-smoothable involution

Introduction
Preliminaries and Overview

Construction of a non-smoothable action
The proof of the vanishing theorem

A vanishing theorem of Bauer-Furuta invariants
A constraint on smooth actions on K3#K3
Edmonds-Ewing’s construction of loc. lin. actions
Construction of a non-smoothable action

G -spin theorem

k+ − k− =
1

4

∑

p∈XZ2

ε(p),

k+ + k− = −
1

8
Sign(X ),

where ε : XZ2 → {±1} is a function determined from the lift of the
action.

∴ 2k± = −
1

8
Sign(X )±

1

4

∑

ε(p).

→
∑

ε(p) ≡ 0 mod 8.
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Theorem (Furuta-Kametani-Minami)

X: homotopy K3#K3 ⇒ BF (c0) 6= 0 ∈ Z/2.

Proposition (Constraints on smooth actions)

◮ Z2 y X: homotopy K3#K3

◮ XZ2 : discrete

◮ bZ2
+ = 5 (Cf. b+ = 6.)

Then |
∑

ε(p)| ≥ 8.

Proof.
If

∑

ε(p) = 0 ⇒ 2k± = 4± 1
4

∑

ε(p) < 6 = 1 + b
Z2
+ .

∴ BF (c0) = 0. ← A Contradiction.
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Atiyah-Bott’s criterion for ε

ι : X → X involution⇒ involution on the frame bundle ι∗ : F → F .

A spin structure is given by ϕ : F̂
2:1
→ F .

For P ,Q ∈ XZ2, want to compare ε(P) & ε(Q).
Take y ∈ FP , y ′ ∈ FQ and a path s connecting y and y ′.
Note ι∗y = −y and ι∗y

′ = −y ′.

C = s ∪ −ι∗s ← a circle

Proposition

ϕ−1(C ) has 2-components ⇔ ε(P) = ε(Q).
(ϕ−1(C ) is connected ⇔ ε(P) = −ε(Q). )
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Edmonds-Ewing’s construction of loc. lin. actions

Theorem (Edmonds-Ewing ’92)

Ψ: V × V → Z a Z2-inv. symm. unimodular even form s.t.

1. As a Z[Z2]-module, V ∼= T ⊕ F ,

where T ∼= nZ← a trivial Z[Z2]-module

F ∼= kZ[Z2]← a free Z[Z2]-module

2. ∀v ∈ V ,Ψ(gv , v) ≡ 0 mod 2.

3. G-signature formula Sign(g , (V ,Ψ)) = 0.

⇒ ∃loc. lin Z2-action on a simply-connected 4-manifold X s.t.

◮ Its intersection form = Ψ,

◮ #XZ2 = n + 2.
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Remark
Since Ψ is supposed even, the homeotype of X is unique

Idea of Proof → Equivariant handle construction

A unit 4-ball B0 ⊂ C
2

x {±1}

T ↔ H1, . . . ,Hn : copies of D2 × D2 ⊂ C
2

x {±1}

F ↔ free 2-handles

Note: BZ2

0 = {0}, (D2 × D2)Z2 = {0}.
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Step 1.

Represent Ψ by a Z2-invariant framed link L in ∂B0.

◮ By changing basis,

Ψ|T ∼= (aij) s.t.

{

aii : even

aij : odd (i 6= j).

◮ K , K ′: Z2-invariant knots in ∂B0.

⇒ lk(K ,K ′) = odd .

−→ Can represent Ψ|T by a framed link LT .
−→ Easy for the free part of Ψ → L.
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Step2. Attach H1, . . . ,Hn and free handles to B0 equivariantly
along L.

−→ Z2 y X0 := B0 ∪ H1 ∪ · · · ∪Hn ∪ (free handles).

The Z2-action on X0 is smooth.
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Step3. Note

◮ Σ := ∂X0: a Z-homology 3-sphere,

◮ Z2 y Σ: free.

Theorem ([EE])

Under the above assumptions, ∃loc. lin Z2-action on W 4 s.t.

◮ W : contractible,

◮ (Z2 y ∂W ) = (Z2 y Σ),

◮ W Z2 = {1 point}.

→ Z2
∃ y X = X0 ∪Σ W , locally linear.
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Note the above action is smooth on X0.
→ Can determine ε on X0 = B0 ∪ H1 ∪ · · · ∪Hn ∪ (free handles).

◮ Each of B0,H1, . . . ,Hn has one fixed point: P ,Q1, . . . ,Qn.

◮ Compare ε(P) with ε(Qi ), i = 1, . . . , n.

L = K1 ∪ · · ·∪Kn ∪ · · · ,

la11 lann

H1 Hn

Proposition

Suppose Ki is a trivial knot.

aii ≡ 2 mod 4⇔ ε(P) = ε(Qi ),

aii ≡ 0 mod 4⇔ ε(P) = −ε(Qi ).
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Construction of a non-smoothable action on K3#K3
X = K3#K3 ⇒ ΨX

∼= 4E8 ⊕ 6H.
Define Z2-action on 4E8 ⊕ 6H as follows:

◮ Z2 y 2E8 ⊕ 2E8: Permutation
◮ Z2 y H ⊕ H: Permutation
◮ Z2 y 4H: Trivial

Let

A =

























0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 2 1 1 1
1 1 1 1 1 2 1 1
1 1 1 1 1 1 2 1
1 1 1 1 1 1 1 2

























↔ indefinite, even, unimodular
∼= 4H

Nobuhiro Nakamura Bauer-Furuta invariants and a non-smoothable involution

Introduction
Preliminaries and Overview

Construction of a non-smoothable action
The proof of the vanishing theorem

A vanishing theorem of Bauer-Furuta invariants
A constraint on smooth actions on K3#K3
Edmonds-Ewing’s construction of loc. lin. actions
Construction of a non-smoothable action

The matrix A can be represented by a link LT whose each
component is a trivial knot.
∵ Let p : S3 → S2 be the Hopf fibration. Put LT = p−1(8 points)

→ ∃ a loc. lin. action on X = K3#K3

Note Z2 y X0 = B0 ∪ (2-handles) is smooth.

Proposition

The smooth action on X0 can not be extended to X smoothly.

Proof.
If smoothly extended ⇒ |

∑

ε(p)| ≥ 8. ← Impossible for A.
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More strongly,

Theorem
The above action is non-smoothable w.r.t ∀ smooth structures.

Difficulty

ε may depend on smooth structures???

→ Give a topological definition of ε.

◮ Consider the topological spin structure on the tangent
microbundle.

◮ Define ε for the action on the top. spin s.t.
◮ depends only on classes of loc. lin. actions.
◮ coincides with the original in the smooth case.

Use Atiyah-Bott’s criterion for ε as the definition.
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Completion of the proof

Proof of the non-smoothability.

◮ If the above action is smoothable w.r.t. some smooth
structure,
⇒ |

∑

ε(p)| ≥ 8 by the vanishing theorem.

◮ But this is impossible for the matrix A.

Similar method ⇒ a nonsmoothable Z2-action on K3.
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The proof of the vanishing theorem

◮ Definition of Bauer-Furuta invariants

◮ Bauer-Furuta invariants as obstruction classes

◮ Equivariant BF invariants and equivariant obstructions

◮ The proof of the vanishing theorem
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Bauer-Furuta invariants
X : smooth, closed, oriented, b1 = 0, b+ ≥ 2, b

Z2
+ ≥ 1.

c : a Spinc -structure
Z2 y (X , c)← smoothly
S±: posi/nega spinor bundle, L = det S+.
Then Z2 y S±,L.
Fix a G -inv. metric & G -inv. connection A0 on L.

Z2 × S1
y
C = Ω1(X )⊕ Γ(S+),

U = Γ(S−)⊕ iΩ+(X )⊕ im d∗(⊂ Ω0(X ))

where

C ⊃ S1
y Γ(S±) by multiplication,

S1
y Ω•(X ) trivially.
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Monopole map

Define µ : C = Ω1(X )⊕ Γ(S+)→ U = Γ(S−)⊕ iΩ+(X )⊕ im d∗ by

µ(a, φ) = (DA0+iaφ,F+
A0+ia − q(φ), d∗a),

where q(φ) = (φ⊗ φ∗)0 ∈ sl(S+) ∼= Ω+ ⊗ C.

Then µ is Z2 × S1-equivariant, non-linear Fredholm, proper.

Decompose µ = l + c , as

l(a, φ) = (DA0
φ, d+a, d∗a), c = µ− l .

◮ l : linear

◮ c : quadratic, compact.
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Finite dimensional approximation

Theorem (Bauer-Furuta)

∃Wf ⊂ U : a finite dimensional subspace s.t.

◮ Wf + im l = U .

◮ For each finite dim. subsp. W ⊃Wf , put V := l−1(W ),

µ −→∃fW : SV → SW a pointed Z2 × S1-equiv. map,

SV , SW : one-point compactifications of V , W based at infinity.

Roughly, fW = (l + pW c)+ for some projection pW .

and, if W ′ = U ⊕W⊂ U

⇒ fW ′ ∼ idU ∧fW : SV ′ ∼= SU⊕V → SW ′ ∼= SU⊕W

↑

Z2 × S1-homotopic
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Equivariant Bauer-Furuta invariants

Definition
Z2-equivariant Bauer-Furuta invariant:

BFZ2(c) := [fW ] ∈ { indZ2
D,H+}Z2×S1

:= colim
U⊂W⊥⊂U

[SU ∧ SV ,SU ∧ SW ]Z2×S1

Definition
(ordinary) Bauer-Furuta invariant:

BF(c) := [fW ] ∈ { ind D,H+}S
1

:= colim
U⊂W⊥⊂U

[SU ∧ SV ,SU ∧ SW ]S
1
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Relation

φ : {indZ2
D,H+}Z2×S1

→ {ind D,H+}S
1

←forgetting the Z2-action

BF(c) = φ(BFZ2(c))

The idea of the proof of the vanishing theorem

◮ Under the assumptions of theorem, we prove φ is 0 map.
→Using equivariant obstruction theory

◮ The proof is inspired by Bauer’s preprint.
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Bauer-Furuta invariants as obstructions

Fact

◮ If ind D > 0⇒ {SV ,SW }S
1 ∼= {SV /S1,SW }.

◮ For sufficiently large V , W ,

{SV /S1,SW } ∼= [SV /S1,SW ]← Ordinary cohomotopy group

→ Can use ordinary obstruction theory.

◮ SV /S1 ∼= Σk CPm

∵ V = aC⊕ bR, S1 y C multiplication, S1 y R trivial.
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Proposition

d(c) = 1, n := dimSV /S1, (⇒ dimSW = n − 1.)

Hr (SV /S1, ∗ ;πr (S
W )) =

{

0 (r 6= n),

Z/2 (r = n).

Theorem (Cf. [Hu])

∃ a subgroup J ⊂ Hn(SV /S1, ∗ ;πn(S
W )),

[SV /S1 ,SW ]∼=Hn(SV /S1, ∗ ;πn(S
W ))/J,

f 7→d(f , 0)← difference obstruction

where 0: SV → {∗} ⊂ SW the collapsing map.
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Corollary

{SV ,SW }S
1 ∼= [SV /S1,SW ] ∼=

{

Z/2 indD : even,

0 indD : odd.

Thus BF(c) can be written as BF(c) = d(fW , 0).
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Equivariant obstruction theory and equiv. BF invariants

In some cases, equivariant BF invariants BFZ2(c) can be written in
terms of equivariant obstruction classes.

Ordinary cohomology

Hr (SV /S1;πr (S
W ))

}

↔

{

Bredon cohomology

Hr
Z2×S1(S

V ;πr (S
W ))

ordinary obstruction class ↔ equivariant obstruction class
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Theorem ([Bredon],[Matumoto]...)

Suppose Hr
Z2×S1(S

V , ∗ ;πr (S
W )) = 0 if r 6= n = dimSV /S1.

Then ∃ a subgroup J ′ ⊂ Hn
Z2×S1(S

V , ∗ ;πn(S
W )),

{SV ,SW }Z2×S1 ∼= Hn
Z2×S1(S

V , ∗ ;πn(S
W ))/J ′.
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The proof of the vanishing theorem

Lemma
If 2k± < 1 + bZ2

+ ⇒ C r
Z2×S1(S

V , ∗ ;πn(S
W )) = 0 if r ≤ n − 2.

Lemma
If b+ − bZ2

+ is odd ⇒ Hn−1
Z2×S1(S

V , ∗ ;πn−1(S
W )) = 0.

Cf. If b+ − bZ2

+ is even ⇒ Hn−1
Z2×S1(S

V , ∗ ; πn−1(S
W )) ∼= Z2.
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Corollary

Suppose

1. b1 = 0, b+ ≥ 2, bZ2
+ ≥ 1,

2. d(c) = 1,

3. 2k± < 1 + bZ2
+

4. b+ − bZ2
+ : odd,

Then,

◮ {SV ,SW }Z2×S1 ∼= Hn
Z2×S1(S

V , ∗ ;πn(S
W ))/J ′,

◮ BFZ2(c) = d(fW , 0).

Cf. BF(c) ∈ {SV ,SW }S
1 ∼= Hn(SV /S1, ∗ ;πn(S

W )/J
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Compare the ordinary cohomology and the Bredon cohomology in
the top degree:

∃φ̃ : Hn
Z2×S1(S

V , ∗ ;πn(S
W ))→ Hn(SV /S1, ∗ ;πn(S

W )) ∼= Z/2.

Claim φ̃ is 0-map.
In fact, φ̃ is (×2)-map.
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Consider the commutative diagram:

Hn(SV /S1, ∗ ;πn(S
W )) −−−−→ Hn(SV /S1, ∗ ;πn(S

W ))/J ∋ BF(c)

φ̃=0

x




φ

x





Hn
Z2×S1(S

V , ∗ ;πn(S
W )) −−−−→ Hn

Z2×S1(S
V , ∗ ;πn(S

W ))/J ′ ∋ BFZ2(c).

⇒ BF(c) = 0
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Remarks

◮ We can give an alternative proof of mod p vanishing theorem
in the case when b1 = 0 & d(c) = 0.

◮ Suppose d(c) = 1 & a Zp-action (p: odd prime) given.
◮ H r

Zp×S1(SV , ∗ ; πr (S
W )) = 0 for low r under some conditions.

◮ However φ is NOT a 0-map.

→Can not expect the vanishing theorem.

◮ d(c) ≥ 2→ Not easy to prove the vanishing theorem.
∵ (n − 2)-th cohomology does not vanish.
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G = Z2 y (X , c) smoothly.

Vanishing theorem of BF

1. b1 = 0, b+ ≥ 2, bZ2
+ ≥ 1.

2. d(c) = 1.

3. 2k± < 1 + bZ2
+ .

4. b+ − bZ2
+ is odd.

Then BF(c) = 0.

Mod p vanishing theorem of SW

1. b1 = 0, b+ ≥ 2, bZ2
+ ≥ 1.

2. 2k± < 1 + bZ2
+ .

Then SWX (c) ≡ 0 mod 2.
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Geometric meaning of 2k± < 1 + bZ2

+

Let fW : SV → SW a finite dimensional approximation.

→ f ′W : SV /S1 → SW , Z2-equivariant.

In general,
(The SW-moduli) = (f ′W )−1(0).
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Geometric meaning of 2k± < 1 + bZ2

+

In fact,

2k± < 1 + bZ2
+ ⇔ dim(SV /S1)Z2 < dim(SW )Z2

⇒ Can perturb f ′W equivariantly s.t. (f ′W )−1(0) ∩ (SV /S1)Z2 = ∅.

∴ Z2 y (f ′W )−1(0) free
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Geometric meaning of 2k± < 1 + bZ2

+

When d(c) = 0, by Pontrjagin-Thom construction,

SWX (c) = BF(c) = #(f ′W )−1(0) ≡ 0 mod 2.

(∵) Z2 y (f ′W )−1(0) free.

→ Mod 2 vanishing theorem
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Geometric meaning of 2k± < 1 + bZ2

+

When d(c) = 1, (f ′W )−1(0) =
∐

S1.
Very roughly,

BF(c) = #{components of (f ′W )−1(0)} mod 2.

But
Z2 y (f ′W )−1(0) free ; BF(c) = 0.

(∵) Z2 can act one component freely.

We need an extra condition b+ − bZ2
+ : odd for the vanishing.
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