Bauer-Furuta invariants and a non-smoothable involution on K3#K3

Nobuhiro Nakamura

The University of Tokyo

August 8, 2007

Nobuhiro Nakamura

Bauer-Furuta invariants and a non-smoothable involution

Introduction Preliminaries and Overview Construction of a non-smoothable action The proof of the vanishing theorem

Main Theorem

Main Theorem

There exists a locally linear \mathbb{Z}_2 -action on X = K3 # K3 which can not be smooth w.r.t. any smooth structure on X.

Introduction

Preliminaries and Overview

Construction of a nonsmoothable \mathbb{Z}_2 -action on K3 # K3

A vanishing theorem of Bauer-Furuta invariants under \mathbb{Z}_2 -actions A constraint on smooth actions on K3#K3Edmonds-Ewing's construction of loc. lin. actions Construction of a non-smoothable action on K3#K3

The proof of the vanishing theorem

Bauer-Furuta invariants Bauer-Furuta invariants as obstructions Equivariant obstruction theory and equiv. BF invariants The proof of the vanishing theorem

Introduction

Theorem (Liu-N. '05-06)

There exist loc. lin. \mathbb{Z}_p -actions (p = 3, 5, 7) on K3 which can not be smooth w.r.t. infinitely many smooth structures including the standard.

The proof consists of 2-steps:

- 1. Existence: To construct loc. lin. actions concretely
 - $\rightarrow\,$ Edmonds-Ewing's realization theorem of loc. lin. actions.
- 2. Non-smoothable: To prove actions in 1. do not satisfy the conditions to be smooth.
 - \rightarrow Seiberg-Witten gauge theory

Non-smoothability

- ▶ Mod *p* vanishing theorem [Fang] ([N.]) Some conditions on fixed point data \Rightarrow SW_X(*c*) \equiv 0 mod *p*.
- SW_{K3}(c₀) = 1 for the spin structure c₀.
 ⇒ Not "(some conditions)".
- But we can not use this method when $SW_X \equiv 0$.
- ► Bauer and Furuta defined a stable cohomotopy refinement of SW-invariants. → Bauer-Furuta invariants
 - e.g. $X = K3 \# K3 \Rightarrow SW_X \equiv 0$ but $BF_X \neq 0$.

Question

- 1. Does "mod p vanishing theorem" for BF-inv. hold?
- 2. Can we construct a non-smoothable action on K3#K3?
- \rightarrow Yes for both 1. and 2.
- 1. A vanishing theorem of BF-inv. under involutions
- 2. Main Theorem

As a byproduct, we also have;

Theorem

There exists a loc. lin. \mathbb{Z}_2 -action on X = K3 s.t.

- 1. $X^{\mathbb{Z}_2}$: discrete
- 2. $b_+^{\mathbb{Z}_2} := \dim H^+(X; \mathbb{R})^{\mathbb{Z}_2} = 3.$
- 3. nonsmoothable for any smooth structure.
- Cf. [Bryan, '98] For smooth \mathbb{Z}_2 -actions on K3,
 - $X^{\mathbb{Z}_2}$: discrete & $b_+^{\mathbb{Z}_2} = 3$, or
 - dim $X^{\mathbb{Z}_2} = 2$ & $b_+^{\mathbb{Z}_2} = 1$.

Nobuhiro Nakamura Bauer-Furuta invariants and a non-smoothable involution

Introduction Preliminaries and Overview Construction of a non-smoothable action The proof of the vanishing theorem

Preliminaries

Definition

G: a finite group, *X*: a *n*-dim. C^0 -manifold. A topological *G*-action on *X* is called locally linear if $\forall x \in X, \exists V_x$: a *G*_x-invariant nbd. of *x*, (*G*_x: isotropy group of *x*.) s.t.

- ► $V_x \cong \mathbb{R}^n$,
- G_x acts on \mathbb{R}^n in linear orthogonal way.

In general,

Non-smoothable G-actions

X: a C^0 -manifold, $X_{\sigma} \leftarrow$ a smooth structure σ specified.

> $LL(G, X) := \{ \text{loc. lin. } G \text{-actions on } X \} / \sim_{homeo},$ $C^{\infty}(G, X_{\sigma}) := \{ \text{smooth } G \text{-actions on } X_{\sigma} \} / \sim_{diffeo}.$

 $\varphi_{\sigma} \colon C^{\infty}(G, X_{\sigma}) \to LL(G, X) \to$ forgetting the smooth structure

Definition

A loc. lin. G-action on X is

- ▶ non-smoothable w.r.t. σ if (Its class) $\notin \operatorname{im} \varphi_{\sigma}$,
- smoothable w.r.t. σ if (Its class) $\in \operatorname{im} \varphi_{\sigma}$.

Nobuhiro Nakamura Bauer-Furuta invariants and a non-smoothable involution Introduction Preliminaries and Overview Construction of a non-smoothable action The proof of the vanishing theorem

Fact If $n = \dim X \le 3 \Rightarrow \text{No}$ non-smoothable loc. lin. action.

<u>*n*</u> = 4

 \exists Many examples of non-smoothable actions.

- 1. [Kwasik-Lee '88] $G = \mathbb{Z}_2 \curvearrowright X$: a closed smooth 4-manifold.
- 2. [Kwasik-Lawson '93] $G = \mathbb{Z}_p \ (p: \text{ prime}) \curvearrowright X: \text{ contractible s.t.}$ $\partial X = \Sigma(a, b, c): \text{ Brieskorn.}$
- 3. [Hambleton-Lee '95] $G = \mathbb{Z}_5 \curvearrowright X = \mathbb{C}P^2 \# \mathbb{C}P^2$.
- 4. [Bryan '98] $G = \mathbb{Z}_2 \frown X = K3$.
- 5. [Kiyono '04] $G = \mathbb{Z}_p$ (p: prime) $\curvearrowright X = \#S^2 \times S^2$.
- 6. [Liu-N '05-06] $G = \mathbb{Z}_p$ $(p = 3, 5, 7) \curvearrowright X = E(n)$.
- 7. [Chen-Kwasik '07] \exists family of symplectic exotic K3 s.t. \forall nontrivial odd order loc. lin. actions are non-smoothable.
- 8. [N. '07] $G = \mathbb{Z}_2 \curvearrowright X = K3 \# K3$.

Nobuhiro Nakamura	Bauer-Furuta invariants and a non-smoothable involution
Introduction	A vanishing theorem of Bauer-Furuta invariants
Preliminaries and Overview	A constraint on smooth actions on K3#K3
Construction of a non-smoothable action	Edmonds-Ewing's construction of loc. lin. actions
The proof of the vanishing theorem	Construction of a non-smoothable action

Construction of a non-smoothable \mathbb{Z}_2 -action on K3 # K3

- A vanishing theorem of Bauer-Furuta invariants under Z₂-actions
- A constraint on smooth \mathbb{Z}_2 -actions on K3#K3
- Edmonds-Ewing's construction of loc. lin. actions.
- Construction of a non-smoothable \mathbb{Z}_2 -action

Bauer-Furuta invariants and a non-smoothable involution

A vanishing theorem of Bauer-Furuta invariants under \mathbb{Z}_2 -actions

Suppose

- $G = \mathbb{Z}_2$ acts on a smooth closed oriented X^4 smoothly.
- the \mathbb{Z}_2 -action lifts to a Spin^{*c*}-structure *c*.

Fix a \mathbb{Z}_2 -invariant metric

and a \mathbb{Z}_2 -invariant connection A_0 on the determinant line bundle L. $\rightarrow D_{A_0} \colon \Gamma(S^+) \rightarrow \Gamma(S^-) \mathbb{Z}_2$ -equivariant Dirac operator. Then,

$$\operatorname{ind}_{\mathbb{Z}_2} D_{A_0} = k_+ \mathbb{C}_+ + k_- \mathbb{C}_- \in R(\mathbb{Z}_2) \cong \mathbb{Z}[t]/(t^2 - 1),$$

where

- \mathbb{Z}_2 acts on \mathbb{C}_+ trivially,
- $\mathbb{Z}_2=\{\pm 1\}$ acts on \mathbb{C}_- by multiplication.

Nobuhiro Nakamura

Introduction	A vanishing theorem of Bauer-Furuta invariants
Preliminaries and Overview	A constraint on smooth actions on K3#K3
Construction of a non-smoothable action	Edmonds-Ewing's construction of loc. lin. actions
The proof of the vanishing theorem	Construction of a non-smoothable action

Theorem (Vanishing theorem of BF)

Suppose

- 1. $b_1 = 0, \ b_+ \ge 2, \ b_+^{\mathbb{Z}_2} = \dim H^+(X; \mathbb{R})^{\mathbb{Z}_2} \ge 1.$
- 2. $d(c) := 2(k_+ + k_-) (1 + b_+) = 1.$
- 3. $2k_{\pm} < 1 + b_{\pm}^{\mathbb{Z}_2}$.
- 4. $b_{+} b_{+}^{\mathbb{Z}_2}$ is odd.

Then BF(c) = 0.

Remark

- \blacktriangleright d(c) is the virtual dimension of the SW-moduli for c.
- When d(c) = 1,
 - $k_+ + k_-$: even $\Rightarrow BF(c) \in \mathbb{Z}/2$.
 - $k_+ + k_-$: odd $\Rightarrow BF(c) = 0$.
 - always $SW_X(c) = 0$.

A constraint on smooth actions on K3#K3

Suppose

- X: smooth, closed, oriented, spin, $\pi_1(X) = 1$.
- $\mathbb{Z}_2 \cap X$ smoothly.

If $X^{\mathbb{Z}_2}$: discrete \Rightarrow the \mathbb{Z}_2 -action lifts to the spin c_0 .

Nobuhiro	Nakamura
Nobulino	Nananiura

Bauer-Furuta invariants and a non-smoothable involution

Introduction	A vanishing theorem of Bauer-Furuta invariants
Preliminaries and Overview	A constraint on smooth actions on K3#K3
Construction of a non-smoothable action	Edmonds-Ewing's construction of loc. lin. actions
The proof of the vanishing theorem	Construction of a non-smoothable action

G-spin theorem

$$\begin{aligned} k_+ - k_- &= \frac{1}{4} \sum_{p \in X^{\mathbb{Z}_2}} \varepsilon(p), \\ k_+ + k_- &= -\frac{1}{8} \operatorname{Sign}(X), \end{aligned}$$

where $\varepsilon \colon X^{\mathbb{Z}_2} \to \{\pm 1\}$ is a function determined from the lift of the action.

$$\therefore 2k_{\pm} = -\frac{1}{8} \operatorname{Sign}(X) \pm \frac{1}{4} \sum \varepsilon(p).$$
$$\rightarrow \sum \varepsilon(p) \equiv 0 \mod 8.$$

A vanishing theorem of Bauer-Furuta invariants A constraint on smooth actions on K3#K3 Edmonds-Ewing's construction of loc. Iin. actions Construction of a non-smoothable action

Theorem (Furuta-Kametani-Minami) X: homotopy $K3\#K3 \Rightarrow BF(c_0) \neq 0 \in \mathbb{Z}/2$.

Proposition (Constraints on smooth actions)

- $\mathbb{Z}_2 \curvearrowright X$: homotopy K3#K3
- $X^{\mathbb{Z}_2}$: discrete
- ▶ $b_+^{\mathbb{Z}_2} = 5$ (*Cf.* $b_+ = 6$.)

Then $|\sum \varepsilon(p)| \ge 8$.

Proof.

If $\sum \varepsilon(p) = 0 \Rightarrow 2k_{\pm} = 4 \pm \frac{1}{4} \sum \varepsilon(p) < 6 = 1 + b_{\pm}^{\mathbb{Z}_2}$. $\therefore BF(c_0) = 0. \leftarrow A \text{ Contradiction}.$

Nobuhiro Nakamura Bauer-Furuta invariants and a non-smoothable involution

Introduction Preliminaries and Overview Construction of a non-smoothable action The proof of the vanishing theorem	A vanishing theorem of Bauer-Furuta invariants A constraint on smooth actions on K3#K3 Edmonds-Ewing's construction of loc. lin. actions Construction of a non-smoothable action
The proof of the valishing theorem	construction of a non-smoothable action

Atiyah-Bott's criterion for ε

 $\iota: X \to X$ involution \Rightarrow involution on the frame bundle $\iota_*: F \to F$. A spin structure is given by $\varphi: \hat{F} \xrightarrow{2:1} F$. For $P, Q \in X^{\mathbb{Z}_2}$, want to compare $\varepsilon(P)$ & $\varepsilon(Q)$. Take $y \in F_P$, $y' \in F_Q$ and a path *s* connecting *y* and *y'*. Note $\iota_* y = -y$ and $\iota_* y' = -y'$.

$$C = s \cup -\iota_* s \leftarrow a \text{ circle}$$

Proposition

 $\varphi^{-1}(C)$ has 2-components $\Leftrightarrow \varepsilon(P) = \varepsilon(Q)$. $(\varphi^{-1}(C) \text{ is connected } \Leftrightarrow \varepsilon(P) = -\varepsilon(Q).$)

A vanishing theorem of Bauer-Furuta invariants A constraint on smooth actions on K3#K3Edmonds-Ewing's construction of loc. Iin. actions Construction of a non-smoothable action

Edmonds-Ewing's construction of loc. lin. actions

Theorem (Edmonds-Ewing '92) $\Psi: V \times V \rightarrow \mathbb{Z} \ a \mathbb{Z}_2$ -inv. symm. unimodular even form s.t. 1. As a $\mathbb{Z}[\mathbb{Z}_2]$ -module, $V \cong T \oplus F$,

> where $T \cong n\mathbb{Z} \leftarrow a$ trivial $\mathbb{Z}[\mathbb{Z}_2]$ -module $F \cong k\mathbb{Z}[\mathbb{Z}_2] \leftarrow a$ free $\mathbb{Z}[\mathbb{Z}_2]$ -module

- 2. $\forall v \in V, \Psi(gv, v) \equiv 0 \mod 2$.
- 3. *G*-signature formula $Sign(g, (V, \Psi)) = 0$.
- $\Rightarrow \exists loc. lin \mathbb{Z}_2$ -action on a simply-connected 4-manifold X s.t.
 - Its intersection form $= \Psi$,
 - $\blacktriangleright \# X^{\mathbb{Z}_2} = n+2.$

Noduniro Nakamura	Bauer-Furuta invariants and a non-smoothable involution
Introduction	A vanishing theorem of Bayer Euruta invariants
Introduction	A vanishing theorem of Dauer-Furuta invariants
Preliminaries and Overview	A constraint on smooth actions on $K3\#K3$
Construction of a non-smoothable action	Edmonds-Ewing's construction of loc. lin. actions
The proof of the vanishing theorem	Construction of a non-smoothable action

Remark

Since Ψ is supposed even, the homeotype of X is unique

 $\underline{\mathsf{Idea}\ of\ \mathsf{Proof}} \to \mathsf{Equivariant\ handle\ construction}$

A unit 4-ball $B_0 \subset \mathbb{C}^2 \curvearrowleft \{\pm 1\}$ $T \leftrightarrow H_1, \ldots, H_n$: copies of $D^2 \times D^2 \subset \mathbb{C}^2 \curvearrowleft \{\pm 1\}$ $F \leftrightarrow$ free 2-handles

Note: $B_0^{\mathbb{Z}_2} = \{0\}$, $(D^2 \times D^2)^{\mathbb{Z}_2} = \{0\}$.

A vanishing theorem of Bauer-Furuta invariants A constraint on smooth actions on K3#K3Edmonds-Ewing's construction of loc. lin. actions Construction of a non-smoothable action

Step 1.

Represent Ψ by a \mathbb{Z}_2 -invariant framed link L in ∂B_0 .

By changing basis,

$$\Psi|_{\mathcal{T}} \cong (a_{ij}) ext{ s.t. } \left\{ egin{array}{l} a_{ii} : ext{ even} \ a_{ij} : ext{ odd } (i
eq j). \end{array}
ight.$$

► K, K': \mathbb{Z}_2 -invariant knots in ∂B_0 .

$$\Rightarrow lk(K, K') = \text{ odd }.$$

- \longrightarrow Can represent $\Psi|_{\mathcal{T}}$ by a framed link $L_{\mathcal{T}}$.
- \longrightarrow Easy for the free part of $\Psi \rightarrow L$.

Nobuhiro Nakamura	Bauer-Furuta invariants and a non-smoothable involution
Introduction	A vanishing theorem of Bauer-Furuta invariants
Preliminaries and Overview	A constraint on smooth actions on $K3\#K3$
Construction of a non-smoothable action	Edmonds-Ewing's construction of loc. lin. actions
The proof of the vanishing theorem	Construction of a non-smoothable action

Step2. Attach H_1, \ldots, H_n and free handles to B_0 equivariantly along L.

 $\longrightarrow \mathbb{Z}_2 \curvearrowright X_0 := B_0 \cup H_1 \cup \cdots \cup H_n \cup \text{(free handles)}.$

The \mathbb{Z}_2 -action on X_0 is smooth.

A vanishing theorem of Bauer-Furuta invariants A constraint on smooth actions on K3#K3Edmonds-Ewing's construction of loc. Iin. actions Construction of a non-smoothable action

Step3. Note

- $\Sigma := \partial X_0$: a \mathbb{Z} -homology 3-sphere,
- $\mathbb{Z}_2 \curvearrowright \Sigma$: free.

Theorem ([EE])

Under the above assumptions, $\exists loc. lin \mathbb{Z}_2$ -action on W^4 s.t.

- ► W: contractible,
- $\blacktriangleright (\mathbb{Z}_2 \frown \partial W) = (\mathbb{Z}_2 \frown \Sigma),$
- $W^{\mathbb{Z}_2} = \{1 \text{ point}\}.$

$$\rightarrow \mathbb{Z}_2^{\exists} \curvearrowright X = X_0 \cup_{\Sigma} W$$
, locally linear.

Nobuhiro Nakamura Bauer-Furut

Bauer-Furuta invariants and a non-smoothable involution

Introduction	A vanishing theorem of Bauer-Furuta invariants
Preliminaries and Overview	A constraint on smooth actions on K3#K3
Construction of a non-smoothable action	Edmonds-Ewing's construction of loc. lin. actions
The proof of the vanishing theorem	Construction of a non-smoothable action

Note the above action is smooth on X_0 .

- \rightarrow Can determine ε on $X_0 = B_0 \cup H_1 \cup \cdots \cup H_n \cup (\text{free handles}).$
 - ▶ Each of B_0, H_1, \ldots, H_n has one fixed point: P, Q_1, \ldots, Q_n .
 - Compare $\varepsilon(P)$ with $\varepsilon(Q_i)$, $i = 1, \ldots, n$.

$$L = K_1 \cup \cdots \cup K_n \cup \cdots,$$
$$\uparrow a_{11} \qquad \uparrow a_{nn}$$
$$H_1 \qquad H_n$$

Proposition

Suppose K_i is a trivial knot.

 $\begin{array}{ll} a_{ii} \equiv 2 \mod 4 \Leftrightarrow \varepsilon(P) = \varepsilon(Q_i), \\ a_{ii} \equiv 0 \mod 4 \Leftrightarrow \varepsilon(P) = -\varepsilon(Q_i). \end{array}$

A vanishing theorem of Bauer-Furuta invariants A constraint on smooth actions on K3#K3Edmonds-Ewing's construction of loc. lin. actions Construction of a non-smoothable action

Construction of a non-smoothable action on K3#K3

 $X = K3 \# K3 \Rightarrow \Psi_X \cong 4E_8 \oplus 6H.$ Define \mathbb{Z}_2 -action on $4E_8 \oplus 6H$ as follows:

- ▶ $\mathbb{Z}_2 \frown 2E_8 \oplus 2E_8$: Permutation
- ▶ $\mathbb{Z}_2 \frown H \oplus H$: Permutation
- $\mathbb{Z}_2 \curvearrowright 4H$: Trivial

Let

	/0	1	1	1	1	1	1	1	
	1	0	1	1	1	1	1	1	
	1	1	0	1	1	1	1	1	
Λ	1	1	1	0	1	1	1	1	$\leftrightarrow indefinite, even, unimodular$
A =	1	1	1	1	2	1	1	1	\cong 4 <i>H</i>
	1	1	1	1	1	2	1	1	
	1	1	1	1	1	1	2	1	
	$\backslash 1$	1	1	1	1	1	1	2/	

Nobuhiro Nakamura

Bauer-Furuta invariants and a non-smoothable involution

The matrix A can be represented by a link L_T whose each component is a trivial knot.

: Let $p: S^3 \to S^2$ be the Hopf fibration. Put $L_T = p^{-1}(8 \text{ points})$

$$\rightarrow \exists$$
 a loc. lin. action on $X = K3 \# K3$

Note $\mathbb{Z}_2 \curvearrowright X_0 = B_0 \cup (2\text{-handles})$ is smooth.

Proposition

The smooth action on X_0 can not be extended to X smoothly.

Proof.

If smoothly extended $\Rightarrow |\sum \varepsilon(p)| \ge 8$. \leftarrow Impossible for A.

A vanishing theorem of Bauer-Furuta invariants A constraint on smooth actions on K3#K3Edmonds-Ewing's construction of loc. Iin. actions Construction of a non-smoothable action

More strongly,

Theorem

The above action is non-smoothable w.r.t \forall smooth structures.

Difficulty

 ε may depend on smooth structures???

 \rightarrow Give a topological definition of $\varepsilon.$

- Consider the topological spin structure on the tangent microbundle.
- Define ε for the action on the top. spin s.t.
 - depends only on classes of loc. lin. actions.
 - coincides with the original in the smooth case.

Use Atiyah-Bott's criterion for ε as the definition.

Nobuhiro Nakamura	Bauer-Furuta invariants and a non-smoothable involution
Introduction	A vanishing theorem of Bauer-Furuta invariants
Preliminaries and Overview	A constraint on smooth actions on $K3\#K3$
Construction of a non-smoothable action	Edmonds-Ewing's construction of loc. lin. actions
The proof of the vanishing theorem	Construction of a non-smoothable action

Completion of the proof

Proof of the non-smoothability.

If the above action is smoothable w.r.t. some smooth structure,

 $\Rightarrow |\sum \varepsilon(p)| \ge 8$ by the vanishing theorem.

• But this is impossible for the matrix A.

Similar method \Rightarrow a nonsmoothable \mathbb{Z}_2 -action on K3.

Bauer-Furuta invariants Bauer-Furuta invariants as obstructions Equivariant obstruction theory Fhe proof of the vanishing theorem

The proof of the vanishing theorem

- Definition of Bauer-Furuta invariants
- Bauer-Furuta invariants as obstruction classes
- Equivariant BF invariants and equivariant obstructions
- The proof of the vanishing theorem

Nobumro Nakamura	Dater-Furtha invariants and a non-smoothable involution
Introduction	Bauer-Furuta invariants
Preliminaries and Overview	Bauer-Furuta invariants as obstructions
Construction of a non-smoothable action	Equivariant obstruction theory
The proof of the vanishing theorem	The proof of the vanishing theorem

Bauer-Furuta invariants

 $\begin{array}{l} X: \text{ smooth, closed, oriented, } b_1 = 0, \ b_+ \geq 2, \ b_+^{\mathbb{Z}_2} \geq 1. \\ c: \text{ a } \operatorname{Spin}^c\text{-structure} \\ \mathbb{Z}_2 \curvearrowright (X,c) \leftarrow \text{ smoothly} \\ S^{\pm}: \ \text{posi/nega spinor bundle, } L = \det S^+. \\ \text{Then } \mathbb{Z}_2 \curvearrowright S^{\pm}, L. \\ \text{Fix a } G\text{-inv. metric } \& G\text{-inv. connection } A_0 \text{ on } L. \\ \mathbb{Z}_2 \times S^1 \curvearrowright \begin{array}{c} \mathcal{C} = \Omega^1(X) \oplus \Gamma(S^+), \\ \mathcal{U} = \Gamma(S^-) \oplus i\Omega^+(X) \oplus \operatorname{im} d^*(\subset \Omega^0(X)) \end{array}$

where

$$\mathbb{C} \supset S^1 \curvearrowright \Gamma(S^{\pm})$$
 by multiplication,
 $S^1 \curvearrowright \Omega^{ullet}(X)$ trivially.

Bauer-Furuta invariants Bauer-Furuta invariants as obstruction Equivariant obstruction theory The proof of the vanishing theorem

Monopole map

Define $\mu \colon \mathcal{C} = \Omega^1(X) \oplus \Gamma(S^+) \to \mathcal{U} = \Gamma(S^-) \oplus i\Omega^+(X) \oplus \operatorname{im} d^*$ by

$$\mu(a,\phi) = (D_{A_0+ia}\phi, F^+_{A_0+ia} - q(\phi), d^*a),$$

where $q(\phi) = (\phi \otimes \phi^*)_0 \in \mathfrak{sl}(S^+) \cong \Omega^+ \otimes \mathbb{C}.$

Then μ is $\mathbb{Z}_2 \times S^1$ -equivariant, non-linear Fredholm, proper.

Decompose $\mu = l + c$, as

$$I(a,\phi) = (D_{A_0}\phi, d^+a, d^*a), \quad c = \mu - I.$$

- ► /: linear
- ► c: quadratic, compact.

Nobuhiro Nakamura	Bauer-Furuta invariants and a non-smoothable involution
Introduction Preliminaries and Overview	Bauer-Furuta invariants Bauer-Furuta invariants as obstructions

Equivariant obstruction theor

Finite dimensional approximation

Theorem (Bauer-Furuta)

 $\exists W_f \subset \mathcal{U}$: a finite dimensional subspace s.t.

The proof of the vanishing theorem

- $\blacktriangleright W_f + \operatorname{im} I = \mathcal{U}.$
- ▶ For each finite dim. subsp. $W \supset W_f$, put $V := I^{-1}(W)$,

$$\mu \longrightarrow \exists f_W : S^V \rightarrow S^W \text{ a pointed } \mathbb{Z}_2 \times S^1 \text{-equiv. map},$$

 S^V , S^W : one-point compactifications of V, W based at infinity. Roughly, $f_W = (I + p_W c)^+$ for some projection p_W . and, if $W' = U \oplus W \subset U$

$$\Rightarrow f_{W'} \sim \mathrm{id}_U \wedge f_W \colon S^{V'} \cong S^{U \oplus V} \to S^{W'} \cong S^{U \oplus W}$$

$$\uparrow$$

$$\mathbb{Z}_2 \times S^1 \text{-homotopic}$$

Bauer-Furuta invariants Bauer-Furuta invariants as obstruction Equivariant obstruction theory The proof of the vanishing theorem

Equivariant Bauer-Furuta invariants

Definition

 \mathbb{Z}_2 -equivariant Bauer-Furuta invariant:

$$\mathsf{BF}^{\mathbb{Z}_2}(c) := [f_W] \in \{ \operatorname{ind}_{\mathbb{Z}_2} D, H^+ \}^{\mathbb{Z}_2 \times S^1} \\ := \underset{U \subset W^{\perp} \subset \mathcal{U}}{\operatorname{colim}} [S^U \wedge S^V, S^U \wedge S^W]^{\mathbb{Z}_2 \times S^1}$$

Definition

(ordinary) Bauer-Furuta invariant:

$$\mathsf{BF}(c) := [f_W] \in \{ \text{ ind } D, H^+ \}^{S^1} \\ := \underset{U \subset W^\perp \subset \mathcal{U}}{\mathsf{colim}} [S^U \wedge S^V, S^U \wedge S^W]^{S^1}$$

Nobuhiro Nakamura Bauer-Furuta invariants and a non-smoothable involution

Introduction Preliminaries and Overview	Bauer-Furuta invariants Bauer-Furuta invariants as obstructions
Construction of a non-smoothable action	Equivariant obstruction theory
The proof of the vanishing theorem	The proof of the vanishing theorem

Relation

$$\phi \colon \{ \operatorname{ind}_{\mathbb{Z}_2} D, H^+ \}^{\mathbb{Z}_2 \times S^1} \to \{ \operatorname{ind} D, H^+ \}^{S^1} \leftarrow \text{forgetting the } \mathbb{Z}_2\text{-action}$$
$$\mathsf{BF}(c) = \phi(\mathsf{BF}^{\mathbb{Z}_2}(c))$$

The idea of the proof of the vanishing theorem

- Under the assumptions of theorem, we prove ϕ is 0 map. \rightarrow Using equivariant obstruction theory
- ► The proof is inspired by Bauer's preprint.

Bauer-Furuta invariants as obstructions

Fact

• If ind
$$D > 0 \Rightarrow \{S^V, S^W\}^{S^1} \cong \{S^V/S^1, S^W\}.$$

• For sufficiently large V, W,

$$\{S^V/S^1, S^W\} \cong [S^V/S^1, S^W] \leftarrow \text{Ordinary cohomotopy group}$$

 \rightarrow Can use ordinary obstruction theory.

•
$$S^V/S^1 \cong \Sigma^k \mathbb{CP}^m$$

 $\therefore V = a\mathbb{C} \oplus b\mathbb{R}, S^1 \curvearrowright \mathbb{C}$ multiplication, $S^1 \curvearrowright \mathbb{R}$ trivial.

Nobuhiro Nakamura

Preliminaries and Overview	Bauer-Furuta invariants as obstructions
Construction of a non-smoothable action	Equivariant obstruction theory

Proposition

$$d(c) = 1, n := \dim S^V / S^1, (\Rightarrow \dim S^W = n - 1.)$$

$$H^r(S^V / S^1, *; \pi_r(S^W)) = \begin{cases} 0 & (r \neq n), \\ \mathbb{Z}/2 & (r = n). \end{cases}$$

Theorem (*Cf.* [Hu])

$$\exists$$
 a subgroup $J \subset H^n(S^V/S^1, *; \pi_n(S^W)),$
 $[S^V/S^1, S^W] \cong H^n(S^V/S^1, *; \pi_n(S^W))/J,$
 $f \mapsto d(f, \underline{0}) \leftarrow difference \ obstruction$

where $\underline{0}: S^V \rightarrow \{*\} \subset S^W$ the collapsing map.

Corollary

$$\{S^V, S^W\}^{S^1} \cong [S^V/S^1, S^W] \cong \begin{cases} \mathbb{Z}/2 & \text{ind } D: even, \\ 0 & \text{ind } D: odd. \end{cases}$$

Thus BF(c) can be written as $BF(c) = d(f_W, \underline{0})$.

Nobuhiro Nakamura	Bauer-Furuta invariants and a non-smoothable involution
Introduction	Bauer-Furuta invariants
Preliminaries and Overview	Bauer-Furuta invariants as obstructions
Construction of a non-smoothable action	Equivariant obstruction theory
The proof of the vanishing theorem	The proof of the vanishing theorem

Equivariant obstruction theory and equiv. BF invariants

In some cases, equivariant BF invariants $BF^{\mathbb{Z}_2}(c)$ can be written in terms of equivariant obstruction classes.

Ordinary cohomology

$$H^{r}(S^{V}/S^{1}; \pi_{r}(S^{W}))$$
 \leftrightarrow
 $\left\{\begin{array}{l} \text{Bredon cohomology} \\ H^{r}_{\mathbb{Z}_{2} \times S^{1}}(S^{V}; \underline{\pi}_{r}(S^{W})) \\ \text{ordinary obstruction class} \leftrightarrow \text{equivariant obstruction class} \end{array}\right.$

Introduction Preliminaries and Overview Construction of a non-smoothable action The proof of the vanishing theorem Description Construction of a non-smoothable action The proof of the vanishing theorem

Theorem ([Bredon], [Matumoto]...) Suppose $H^r_{\mathbb{Z}_2 \times S^1}(S^V, *; \underline{\pi}_r(S^W)) = 0$ if $r \neq n = \dim S^V/S^1$. Then \exists a subgroup $J' \subset H^n_{\mathbb{Z}_2 \times S^1}(S^V, *; \underline{\pi}_n(S^W))$,

$$\{S^V, S^W\}^{\mathbb{Z}_2 \times S^1} \cong H^n_{\mathbb{Z}_2 \times S^1}(S^V, *; \underline{\pi}_n(S^W))/J'.$$

P	JO	bu	hii	ro	Ν	а	ka	m	ura

Bauer-Furuta invariants and a non-smoothable involution

Introduction	Bauer-Furuta invariants
Preliminaries and Overview	Bauer-Furuta invariants as obstructions
Construction of a non-smoothable action	Equivariant obstruction theory
The proof of the vanishing theorem	The proof of the vanishing theorem

The proof of the vanishing theorem

Lemma
If
$$2k_{\pm} < 1 + b_{+}^{\mathbb{Z}_2} \Rightarrow C^r_{\mathbb{Z}_2 \times S^1}(S^V, *; \underline{\pi}_n(S^W)) = 0$$
 if $r \le n-2$.

Lemma
If
$$b_+ - b_+^{\mathbb{Z}_2}$$
 is $odd \Rightarrow H^{n-1}_{\mathbb{Z}_2 \times S^1}(S^V, *; \underline{\pi}_{n-1}(S^W)) = 0.$
Cf. If $b_+ - b_+^{\mathbb{Z}_2}$ is even $\Rightarrow H^{n-1}_{\mathbb{Z}_2 \times S^1}(S^V, *; \underline{\pi}_{n-1}(S^W)) \cong \mathbb{Z}_2$

Bauer-Furuta invariants Bauer-Furuta invariants as obstructions Equivariant obstruction theory The proof of the vanishing theorem

Corollary

Suppose

- 1. $b_1 = 0, \ b_+ \geq 2, \ b_+^{\mathbb{Z}_2} \geq 1,$
- 2. d(c) = 1,
- 3. $2k_{\pm} < 1 + b_{\pm}^{\mathbb{Z}_2}$
- 4. $b_{+} b_{+}^{\mathbb{Z}_2}$: odd,

Then,

► $\{S^V, S^W\}^{\mathbb{Z}_2 \times S^1} \cong H^n_{\mathbb{Z}_2 \times S^1}(S^V, *; \underline{\pi}_n(S^W))/J',$ ► $\mathsf{BF}^{\mathbb{Z}_2}(c) = d(f_W, \underline{0}).$

Cf. $\mathsf{BF}(c) \in \{S^V, S^W\}^{S^1} \cong H^n(S^V/S^1, *; \pi_n(S^W)/J)$

Nobuhiro Nakamura	Bauer-Furuta invariants and a non-smoothable involution
Introduction	Bauer-Furuta invariants
Preliminaries and Overview	Bauer-Furuta invariants as obstructions
Construction of a non-smoothable action	Equivariant obstruction theory
The proof of the vanishing theorem	The proof of the vanishing theorem

Compare the ordinary cohomology and the Bredon cohomology in the top degree:

$$\exists \tilde{\phi} \colon H^n_{\mathbb{Z}_2 \times S^1}(S^V, *; \underline{\pi}_n(S^W)) \to H^n(S^V/S^1, *; \pi_n(S^W)) \cong \mathbb{Z}/2.$$

Claim $\tilde{\phi}$ is 0-map. In fact, $\tilde{\phi}$ is (×2)-map.

Introduction	Bauer-Furuta invariants
Preliminaries and Overview	Bauer-Furuta invariants as obstructions
Construction of a non-smoothable action	Equivariant obstruction theory
The proof of the vanishing theorem	The proof of the vanishing theorem

Consider the commutative diagram:

$$\begin{array}{ccc} H^{n}(S^{V}/S^{1},*;\pi_{n}(S^{W})) & \longrightarrow & H^{n}(S^{V}/S^{1},*;\pi_{n}(S^{W}))/J \ni \mathsf{BF}(c) \\ & & & & \phi \uparrow \\ \\ H^{n}_{\mathbb{Z}_{2}\times S^{1}}(S^{V},*;\underline{\pi}_{n}(S^{W})) & \longrightarrow & H^{n}_{\mathbb{Z}_{2}\times S^{1}}(S^{V},*;\underline{\pi}_{n}(S^{W}))/J' \ni \mathsf{BF}^{\mathbb{Z}_{2}}(c). \end{array}$$

$$\Rightarrow \mathsf{BF}(c) = 0$$

Nobuhiro Nakamura Bauer-Furuta invariants and a non-smoothable involution

Introduction	Bauer-Furuta invariants
Preliminaries and Overview	Bauer-Furuta invariants as obstructions
Construction of a non-smoothable action	Equivariant obstruction theory
The proof of the vanishing theorem	The proof of the vanishing theorem

Remarks

- ▶ We can give an alternative proof of mod p vanishing theorem in the case when $b_1 = 0 \& d(c) = 0$.
- Suppose d(c) = 1 & a \mathbb{Z}_p -action (p: odd prime) given.
 - $H^r_{\mathbb{Z}_p \times S^1}(S^V, *; \underline{\pi}_r(S^W)) = 0$ for low r under some conditions. However ϕ is NOT a 0-map.

 ${\rightarrow}\mathsf{Can}$ not expect the vanishing theorem.

• $d(c) \ge 2 \rightarrow$ Not easy to prove the vanishing theorem. (n-2)-th cohomology does not vanish.

Bauer-Furuta invariants Bauer-Furuta invariants as obstructions Equivariant obstruction theory The proof of the vanishing theorem

 $G = \mathbb{Z}_2 \curvearrowright (X,c)$ smoothly.

Vanishing theorem of BF

- 1. $b_1 = 0, \ b_+ \ge 2, \ b_+^{\mathbb{Z}_2} \ge 1.$
- 2. d(c) = 1.
- 3. $2k_{\pm} < 1 + b_{\pm}^{\mathbb{Z}_2}$.
- 4. $b_+ b_+^{\mathbb{Z}_2}$ is odd.

Then BF(c) = 0.

Mod p vanishing theorem of SW

- 1. $b_1 = 0, b_+ \ge 2, b_+^{\mathbb{Z}_2} \ge 1.$
- 2. $2k_{\pm} < 1 + b_{\pm}^{\mathbb{Z}_2}$.

Then $SW_X(c) \equiv 0 \mod 2$.

Nobuhiro Nakamura	Bauer-Furuta invariants and a non-smoothable involution

Introduction	Bauer-Furuta invariants
Preliminaries and Overview	Bauer-Furuta invariants as obstructions
Construction of a non-smoothable action	Equivariant obstruction theory
The proof of the vanishing theorem	The proof of the vanishing theorem

Geometric meaning of $2k_{\pm} < 1 + b_{+}^{\mathbb{Z}_2}$

Let $f_W : S^V \to S^W$ a finite dimensional approximation.

 $\rightarrow f'_W \colon S^V/S^1 \rightarrow S^W, \ \mathbb{Z}_2$ -equivariant.

In general,

(The SW-moduli)
$$=(f_W')^{-1}(0).$$

Bauer-Furuta invariants Bauer-Furuta invariants as obstruction Equivariant obstruction theory The proof of the vanishing theorem

Geometric meaning of $2k_{\pm} < 1 + b_{+}^{\mathbb{Z}_2}$

In fact,

$$2k_{\pm} < 1 + b_{\pm}^{\mathbb{Z}_2} \Leftrightarrow \dim(S^V/S^1)^{\mathbb{Z}_2} < \dim(S^W)^{\mathbb{Z}_2}$$

 \Rightarrow Can perturb f'_W equivariantly s.t. $(f'_W)^{-1}(0) \cap (S^V/S^1)^{\mathbb{Z}_2} = \emptyset$.

$$\therefore \mathbb{Z}_2 \curvearrowright (f_W')^{-1}(0)$$
 free

Nobuhiro Nakamura	Bauer-Furuta invariants and a non-smoothable involution
Introduction	Bauer-Furuta invariants
Preliminaries and Overview	Bauer-Furuta invariants as obstructions
Construction of a non-smoothable action	Equivariant obstruction theory
The proof of the vanishing theorem	The proof of the vanishing theorem

Geometric meaning of $2k_{\pm} < 1 + b_{\pm}^{\mathbb{Z}_2}$

When d(c) = 0, by Pontrjagin-Thom construction,

$${
m SW}_X(c)={
m BF}(c)=\#(f'_W)^{-1}(0)\equiv 0 \mod 2.$$

 $(\because) \mathbb{Z}_2 \curvearrowright (f'_W)^{-1}(0)$ free.

 \rightarrow Mod 2 vanishing theorem

Geometric meaning of $2k_{\pm} < 1 + b_{+}^{\mathbb{Z}_2}$

When d(c) = 1, $(f'_W)^{-1}(0) = \coprod S^1$. Very roughly,

$$BF(c) = \#\{\text{components of } (f'_W)^{-1}(0)\} \mod 2.$$

But

 $\mathbb{Z}_2 \curvearrowright (f'_W)^{-1}(0)$ free \Rightarrow BF(c) = 0.

(:.) \mathbb{Z}_2 can act one component freely.

We need an extra condition $b_+ - b_+^{\mathbb{Z}_2}$: odd for the vanishing.

Nobuhiro Nakamura Bauer-Furuta invariants and a non-smoothable involution