Bauer-Furuta invariants and a non-smoothable involution on $K 3 \# K 3$

Nobuhiro Nakamura

The University of Tokyo
August 8, 2007

Main Theorem

Main Theorem
There exists a locally linear \mathbb{Z}_{2}-action on $X=K 3 \# K 3$ which can not be smooth w.r.t. any smooth structure on X.

Introduction

Preliminaries and Overview

Construction of a nonsmoothable \mathbb{Z}_{2}-action on $K 3 \# K 3$
A vanishing theorem of Bauer-Furuta invariants under \mathbb{Z}_{2}-actions
A constraint on smooth actions on $K 3 \# K 3$
Edmonds-Ewing's construction of loc. lin. actions
Construction of a non-smoothable action on K3\#K3
The proof of the vanishing theorem
Bauer-Furuta invariants
Bauer-Furuta invariants as obstructions
Equivariant obstruction theory and equiv. BF invariants
The proof of the vanishing theorem

Introduction

Theorem (Liu-N. '05-06)
There exist loc. lin. \mathbb{Z}_{p}-actions $(p=3,5,7)$ on $K 3$ which can not be smooth w.r.t. infinitely many smooth structures including the standard.

The proof consists of 2-steps:

1. Existence: To construct loc. lin. actions concretely \rightarrow Edmonds-Ewing's realization theorem of loc. lin. actions.
2. Non-smoothable: To prove actions in 1. do not satisfy the conditions to be smooth.
\rightarrow Seiberg-Witten gauge theory

Non-smoothability

Gauge theory \rightarrow Constraints on smooth actions
\rightarrow Non-smoothable

- Mod p vanishing theorem [Fang] ([N.])

Some conditions on fixed point data $\Rightarrow \mathrm{SW}_{X}(c) \equiv 0 \bmod p$.

- $\mathrm{SW}_{K 3}\left(c_{0}\right)=1$ for the spin structure c_{0}.
\Rightarrow Not "(some conditions)".
- But we can not use this method when $\mathrm{SW}_{X} \equiv 0$.
- Bauer and Furuta defined a stable cohomotopy refinement of SW-invariants. \rightarrow Bauer-Furuta invariants
e.g. $X=K 3 \# K 3 \Rightarrow S W_{X} \equiv 0$ but $\mathrm{BF}_{x} \not \equiv 0$.

Question

1. Does "mod p vanishing theorem" for BF -inv. hold?
2. Can we construct a non-smoothable action on K3\#K3?
\rightarrow Yes for both 1. and 2.
3. A vanishing theorem of $B F-i n v$. under involutions
4. Main Theorem

As a byproduct, we also have;

Theorem

There exists a loc. lin. \mathbb{Z}_{2}-action on $X=K 3$ s.t.

1. $X^{\mathbb{Z}_{2}}$: discrete
2. $b_{+}^{\mathbb{Z}_{2}}:=\operatorname{dim} H^{+}(X ; \mathbb{R})^{\mathbb{Z}_{2}}=3$.
3. nonsmoothable for any smooth structure.

Cf. [Bryan, '98] For smooth \mathbb{Z}_{2}-actions on $K 3$,

- $X^{\mathbb{Z}_{2}}$: discrete \& $b_{+}^{\mathbb{Z}_{2}}=3$,
or
- $\operatorname{dim} X^{\mathbb{Z}_{2}}=2 \& b_{+}^{\mathbb{Z}_{2}}=1$.

Preliminaries

Definition

G : a finite group, X : a n-dim. C^{0}-manifold.
A topological G-action on X is called locally linear
if $\forall x \in X, \exists V_{x}$: a G_{x}-invariant nbd. of x, (G_{x} : isotropy group of x.)
s.t.

- $V_{x} \cong \mathbb{R}^{n}$,
- G_{x} acts on \mathbb{R}^{n} in linear orthogonal way.

In general,

Non-smoothable G-actions

X : a C^{0}-manifold,
$X_{\sigma} \leftarrow$ a smooth structure σ specified.

$$
\begin{aligned}
L L(G, X) & :=\{\text { loc. lin. } G \text {-actions on } X\} / \sim_{\text {homeo }} \\
C^{\infty}\left(G, X_{\sigma}\right) & :=\left\{\text { smooth } G \text {-actions on } X_{\sigma}\right\} / \sim_{\text {diffeo }}
\end{aligned}
$$

$\varphi_{\sigma}: C^{\infty}\left(G, X_{\sigma}\right) \rightarrow L L(G, X) \rightarrow$ forgetting the smooth structure

Definition

A loc. lin. G-action on X is

- non-smoothable w.r.t. σ if (Its class) $\notin \operatorname{im} \varphi_{\sigma}$,
- smoothable w.r.t. σ if (Its class) $\in \operatorname{im} \varphi_{\sigma}$.

Fact
If $n=\operatorname{dim} X \leq 3 \Rightarrow$ No non-smoothable loc. lin. action.
$n=4$
Many examples of non-smoothable actions.

1. [Kwasik-Lee '88] $G=\mathbb{Z}_{2} \curvearrowright X$: a closed smooth 4-manifold.
2. [Kwasik-Lawson '93]
$G=\mathbb{Z}_{p}$ (p: prime) $\curvearrowright X$: contractible s.t. $\partial X=\Sigma(a, b, c)$: Brieskorn.
3. [Hambleton-Lee '95] $G=\mathbb{Z}_{5} \curvearrowright X=\mathbb{C P}^{2} \# \mathbb{C} P^{2}$.
4. [Bryan '98] $G=\mathbb{Z}_{2} \curvearrowright X=K 3$.
5. [Kiyono '04] $G=\mathbb{Z}_{p}$ (p : prime $) \curvearrowright X=\# S^{2} \times S^{2}$.
6. [Liu-N '05-06] $G=\mathbb{Z}_{p}(p=3,5,7) \curvearrowright X=E(n)$.
7. [Chen-Kwasik '07] \exists family of symplectic exotic $K 3$ s.t. \forall nontrivial odd order loc. lin. actions are non-smoothable.
8. [N. '07] $G=\mathbb{Z}_{2} \curvearrowright X=K 3 \# K 3$.

Construction of a non-smoothable \mathbb{Z}_{2}-action on $K 3 \# K 3$

- A vanishing theorem of Bauer-Furuta invariants under \mathbb{Z}_{2}-actions
- A constraint on smooth \mathbb{Z}_{2}-actions on $K 3 \# K 3$
- Edmonds-Ewing's construction of loc. lin. actions.
- Construction of a non-smoothable \mathbb{Z}_{2}-action

A vanishing theorem of Bauer-Furuta invariants under

 \mathbb{Z}_{2}-actionsSuppose

- $G=\mathbb{Z}_{2}$ acts on a smooth closed oriented X^{4} smoothly.
- the \mathbb{Z}_{2}-action lifts to a Spin c-structure c.

Fix a \mathbb{Z}_{2}-invariant metric and a \mathbb{Z}_{2}-invariant connection A_{0} on the determinant line bundle L.
$\rightarrow D_{A_{0}}: \Gamma\left(S^{+}\right) \rightarrow \Gamma\left(S^{-}\right) \mathbb{Z}_{2}$-equivariant Dirac operator.
Then,

$$
\operatorname{ind}_{\mathbb{Z}_{2}} D_{A_{0}}=k_{+} \mathbb{C}_{+}+k_{-} \mathbb{C}_{-} \in R\left(\mathbb{Z}_{2}\right) \cong \mathbb{Z}[t] /\left(t^{2}-1\right)
$$

where

- \mathbb{Z}_{2} acts on \mathbb{C}_{+}trivially,
- $\mathbb{Z}_{2}=\{ \pm 1\}$ acts on \mathbb{C}_{-}by multiplication.

Nobuhiro Nakamura
 Bauer-Furuta invariants and a non-smoothable involution

Theorem (Vanishing theorem of BF)

Suppose

1. $b_{1}=0, b_{+} \geq 2, b_{+}^{\mathbb{Z}_{2}}=\operatorname{dim} H^{+}(X ; \mathbb{R})^{\mathbb{Z}_{2}} \geq 1$.
2. $d(c):=2\left(k_{+}+k_{-}\right)-\left(1+b_{+}\right)=1$.
3. $2 k_{ \pm}<1+b_{+}^{\mathbb{Z}_{2}}$.
4. $b_{+}-b_{+}^{\mathbb{Z}_{2}}$ is odd.

Then $\mathrm{BF}(c)=0$.

Remark

- $d(c)$ is the virtual dimension of the SW-moduli for c.
- When $d(c)=1$,
- $k_{+}+k_{-}$: even $\Rightarrow B F(c) \in \mathbb{Z} / 2$.
- $k_{+}+k_{-}$: odd $\Rightarrow B F(c)=0$.
- always $\operatorname{SW}_{X}(c)=0$.

A constraint on smooth actions on K3\#K3

Suppose

- X : smooth, closed, oriented, spin, $\pi_{1}(X)=1$.
- $\mathbb{Z}_{2} \curvearrowright X$ smoothly.

If $X^{\mathbb{Z}_{2}}$: discrete \Rightarrow the \mathbb{Z}_{2}-action lifts to the spin c_{0}.

G-spin theorem

$$
\begin{aligned}
& k_{+}-k_{-}=\frac{1}{4} \sum_{p \in X^{\mathbb{Z}_{2}}} \varepsilon(p), \\
& k_{+}+k_{-}=-\frac{1}{8} \operatorname{Sign}(X),
\end{aligned}
$$

where $\varepsilon: X^{\mathbb{Z}_{2}} \rightarrow\{ \pm 1\}$ is a function determined from the lift of the action.

$$
\begin{gathered}
\therefore 2 k_{ \pm}=-\frac{1}{8} \operatorname{Sign}(X) \pm \frac{1}{4} \sum \varepsilon(p) . \\
\rightarrow \sum \varepsilon(p) \equiv 0 \bmod 8
\end{gathered}
$$

Theorem (Furuta-Kametani-Minami)

X : homotopy $K 3 \# K 3 \Rightarrow B F\left(c_{0}\right) \neq 0 \in \mathbb{Z} / 2$.
Proposition (Constraints on smooth actions)

- $\mathbb{Z}_{2} \curvearrowright X$: homotopy K3\#K3
- $X^{\mathbb{Z}_{2}}$: discrete
- $b_{+}^{\mathbb{Z}_{2}}=5\left(C f . b_{+}=6\right.$.)

Then $\left|\sum \varepsilon(p)\right| \geq 8$.
Proof.
If $\sum \varepsilon(p)=0 \Rightarrow 2 k_{ \pm}=4 \pm \frac{1}{4} \sum \varepsilon(p)<6=1+b_{+}^{\mathbb{Z}_{2}}$.
$\therefore B F\left(c_{0}\right)=0 . \longleftarrow \mathrm{A}$ Contradiction.

Atiyah-Bott's criterion for ε

$\iota: X \rightarrow X$ involution \Rightarrow involution on the frame bundle $\iota_{*}: F \rightarrow F$.
A spin structure is given by $\varphi: \hat{F} \xrightarrow{2: 1} F$.
For $P, Q \in X^{\mathbb{Z}_{2}}$, want to compare $\varepsilon(P) \& \varepsilon(Q)$.
Take $y \in F_{P}, y^{\prime} \in F_{Q}$ and a path s connecting y and y^{\prime}.
Note $\iota_{*} y=-y$ and $\iota_{*} y^{\prime}=-y^{\prime}$.

$$
C=s \cup-\iota_{*} s \leftarrow \text { a circle }
$$

Proposition

$\varphi^{-1}(C)$ has 2-components $\Leftrightarrow \varepsilon(P)=\varepsilon(Q)$.
$\left(\varphi^{-1}(C)\right.$ is connected $\Leftrightarrow \varepsilon(P)=-\varepsilon(Q)$.)

Edmonds-Ewing's construction of loc. lin. actions

Theorem (Edmonds-Ewing '92)

$\Psi: V \times V \rightarrow \mathbb{Z}$ a \mathbb{Z}_{2}-inv. symm. unimodular even form s.t.

1. As a $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module, $V \cong T \oplus F$,

$$
\text { where } \begin{aligned}
T & \cong n \mathbb{Z} \leftarrow \text { a trivial } \mathbb{Z}\left[\mathbb{Z}_{2}\right] \text {-module } \\
& F \cong k \mathbb{Z}\left[\mathbb{Z}_{2}\right] \leftarrow \text { a free } \mathbb{Z}\left[\mathbb{Z}_{2}\right] \text {-module }
\end{aligned}
$$

2. $\forall v \in V, \Psi(g v, v) \equiv 0 \bmod 2$.
3. G-signature formula $\operatorname{Sign}(g,(V, \Psi))=0$.
$\Rightarrow \exists l o c$. lin \mathbb{Z}_{2}-action on a simply-connected 4 -manifold X s.t.

- Its intersection form $=\Psi$,
- $\# X^{\mathbb{Z}_{2}}=n+2$.

Remark

Since Ψ is supposed even, the homeotype of X is unique
Idea of Proof \rightarrow Equivariant handle construction

$$
\begin{gathered}
\text { A unit 4-ball } B_{0} \subset \mathbb{C}^{2} \curvearrowleft\{ \pm 1\} \\
T \leftrightarrow H_{1}, \ldots, H_{n}: \text { copies of } D^{2} \times D^{2} \subset \mathbb{C}^{2} \curvearrowleft\{ \pm 1\} \\
F \leftrightarrow \text { free 2-handles }
\end{gathered}
$$

Note: $B_{0}^{\mathbb{Z}_{2}}=\{0\},\left(D^{2} \times D^{2}\right)^{\mathbb{Z}_{2}}=\{0\}$.

Step 1.
Represent Ψ by a \mathbb{Z}_{2}-invariant framed link L in ∂B_{0}.

- By changing basis,

$$
\left.\Psi\right|_{T} \cong\left(a_{i j}\right) \text { s.t. }\left\{\begin{array}{l}
a_{i j}: \text { even } \\
a_{i j}: \text { odd }(i \neq j) .
\end{array}\right.
$$

- $K, K^{\prime}: \mathbb{Z}_{2}$-invariant knots in ∂B_{0}.

$$
\Rightarrow I k\left(K, K^{\prime}\right)=\text { odd } .
$$

\longrightarrow Can represent $\left.\Psi\right|_{T}$ by a framed link L_{T}.
\longrightarrow Easy for the free part of $\Psi \rightarrow L$.

Step2. Attach H_{1}, \ldots, H_{n} and free handles to B_{0} equivariantly along L.

$$
\longrightarrow \mathbb{Z}_{2} \curvearrowright X_{0}:=B_{0} \cup H_{1} \cup \cdots \cup H_{n} \cup \text { (free handles). }
$$

The \mathbb{Z}_{2}-action on X_{0} is smooth.

Step3. Note

- $\Sigma:=\partial X_{0}:$ a \mathbb{Z}-homology 3-sphere,
- $\mathbb{Z}_{2} \curvearrowright \Sigma$: free.

Theorem ([EE])

Under the above assumptions, \exists loc. lin \mathbb{Z}_{2}-action on W^{4} s.t.

- W: contractible,
- $\left(\mathbb{Z}_{2} \curvearrowright \partial W\right)=\left(\mathbb{Z}_{2} \curvearrowright \Sigma\right)$,
- $W^{\mathbb{Z}_{2}}=\{1$ point $\}$.

$$
\rightarrow \mathbb{Z}_{2}^{\exists} \curvearrowright X=X_{0} \cup_{\Sigma} W, \text { locally linear. }
$$

Note the above action is smooth on X_{0}.
\rightarrow Can determine ε on $X_{0}=B_{0} \cup H_{1} \cup \cdots \cup H_{n} \cup$ (free handles).

- Each of $B_{0}, H_{1}, \ldots, H_{n}$ has one fixed point: P, Q_{1}, \ldots, Q_{n}.
- Compare $\varepsilon(P)$ with $\varepsilon\left(Q_{i}\right), i=1, \ldots, n$.

$$
L=K_{1} \cup \cdots \cup K_{n} \cup \cdots,
$$

$\downarrow a_{11}$	$\downarrow a_{n n}$
H_{1}	H_{n}

Proposition

Suppose K_{i} is a trivial knot.

$$
\begin{aligned}
& a_{i i} \equiv 2 \bmod 4 \Leftrightarrow \varepsilon(P)=\varepsilon\left(Q_{i}\right), \\
& a_{i i} \equiv 0 \bmod 4 \Leftrightarrow \varepsilon(P)=-\varepsilon\left(Q_{i}\right) .
\end{aligned}
$$

Construction of a non-smoothable action on K3\#K3

$X=K 3 \# K 3 \Rightarrow \Psi_{X} \cong 4 E_{8} \oplus 6 H$.
Define \mathbb{Z}_{2}-action on $4 E_{8} \oplus 6 H$ as follows:

- $\mathbb{Z}_{2} \curvearrowright 2 E_{8} \oplus 2 E_{8}$: Permutation
- $\mathbb{Z}_{2} \curvearrowright H \oplus H$: Permutation
- $\mathbb{Z}_{2} \curvearrowright 4 H$: Trivial

Let
$A=\left(\begin{array}{llllllll}0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2\end{array}\right) \leftrightarrow$ indefinite, even, unimodular

The matrix A can be represented by a link L_{T} whose each component is a trivial knot.
\because Let $p: S^{3} \rightarrow S^{2}$ be the Hopf fibration. Put $L_{T}=p^{-1}$ (8 points)
$\rightarrow \exists$ a loc. lin. action on $X=K 3 \# K 3$
Note $\mathbb{Z}_{2} \curvearrowright X_{0}=B_{0} \cup$ (2-handles) is smooth.
Proposition
The smooth action on X_{0} can not be extended to X smoothly.
Proof.
If smoothly extended $\Rightarrow\left|\sum \varepsilon(p)\right| \geq 8$. \leftarrow Impossible for A.

More strongly,

Theorem

The above action is non-smoothable w.r.t \forall smooth structures.

Difficulty

ε may depend on smooth structures???
\rightarrow Give a topological definition of ε.

- Consider the topological spin structure on the tangent microbundle.
- Define ε for the action on the top. spin s.t.
- depends only on classes of loc. lin. actions.
- coincides with the original in the smooth case.

Use Atiyah-Bott's criterion for ε as the definition.

Completion of the proof

Proof of the non-smoothability.

- If the above action is smoothable w.r.t. some smooth structure,
$\Rightarrow\left|\sum \varepsilon(p)\right| \geq 8$ by the vanishing theorem.
- But this is impossible for the matrix A.

Similar method \Rightarrow a nonsmoothable \mathbb{Z}_{2}-action on $K 3$.

The proof of the vanishing theorem

- Definition of Bauer-Furuta invariants
- Bauer-Furuta invariants as obstruction classes
- Equivariant BF invariants and equivariant obstructions
- The proof of the vanishing theorem

Bauer-Furuta invariants

X : smooth, closed, oriented, $b_{1}=0, b_{+} \geq 2, b_{+}^{\mathbb{Z}_{2}} \geq 1$.
$c:$ a Spin c-structure
$\mathbb{Z}_{2} \curvearrowright(X, c) \leftarrow$ smoothly
$S^{ \pm}$: posi/nega spinor bundle, $L=\operatorname{det} S^{+}$.
Then $\mathbb{Z}_{2} \curvearrowright S^{ \pm}, L$.
Fix a G-inv. metric \& G-inv. connection A_{0} on L.

$$
\mathbb{Z}_{2} \times S^{1} \curvearrowright \begin{aligned}
\mathcal{C} & =\Omega^{1}(X) \oplus \Gamma\left(S^{+}\right), \\
\mathcal{U} & =\Gamma\left(S^{-}\right) \oplus i \Omega^{+}(X) \oplus \operatorname{im} d^{*}\left(\subset \Omega^{0}(X)\right)
\end{aligned}
$$

where

$$
\begin{gathered}
\mathbb{C} \supset S^{1} \curvearrowright \Gamma\left(S^{ \pm}\right) \text {by multiplication, } \\
S^{1} \curvearrowright \Omega^{\bullet}(X) \text { trivially. }
\end{gathered}
$$

Monopole map

Define $\mu: \mathcal{C}=\Omega^{1}(X) \oplus \Gamma\left(S^{+}\right) \rightarrow \mathcal{U}=\Gamma\left(S^{-}\right) \oplus i \Omega^{+}(X) \oplus i m d^{*}$ by

$$
\begin{aligned}
& \mu(a, \phi)=\left(D_{A_{0}+i a} \phi, F_{A_{0}+i a}^{+}-q(\phi), d^{*} a\right) \\
& \text { where } q(\phi)=\left(\phi \otimes \phi^{*}\right)_{0} \in \mathfrak{s l}\left(S^{+}\right) \cong \Omega^{+} \otimes \mathbb{C} .
\end{aligned}
$$

Then μ is $\mathbb{Z}_{2} \times S^{1}$-equivariant, non-linear Fredholm, proper.
Decompose $\mu=I+c$, as

$$
I(a, \phi)=\left(D_{A_{0}} \phi, d^{+} a, d^{*} a\right), \quad c=\mu-I .
$$

- I: linear
- c: quadratic, compact.

Finite dimensional approximation

Theorem (Bauer-Furuta)
$\exists W_{f} \subset \mathcal{U}$: a finite dimensional subspace s.t.

- $W_{f}+\operatorname{im} I=\mathcal{U}$.
- For each finite dim. subsp. $W \supset W_{f}$, put $V:=I^{-1}(W)$,

$$
\mu \longrightarrow \exists f_{W}: S^{V} \rightarrow S^{W} \text { a pointed } \mathbb{Z}_{2} \times S^{1} \text {-equiv. map, }
$$

S^{V}, S^{W} : one-point compactifications of V, W based at infinity.
Roughly, $f_{W}=\left(I+p_{W} C\right)^{+}$for some projection p_{W}.
and, if $W^{\prime}=U \oplus W \subset \mathcal{U}$

$$
\Rightarrow f_{W^{\prime}} \sim \operatorname{id}_{U} \wedge f_{W}: S^{V^{\prime}} \cong S^{U \oplus V} \rightarrow S^{W^{\prime}} \cong S^{U \oplus W}
$$

$$
\mathbb{Z}_{2} \times S^{1} \text {-homotopic }
$$

Equivariant Bauer-Furuta invariants

Definition

\mathbb{Z}_{2}-equivariant Bauer-Furuta invariant:

$$
\begin{aligned}
\mathrm{BF}^{\mathbb{Z}_{2}}(c):=\left[f_{W}\right] & \in\left\{\operatorname{ind}_{\mathbb{Z}_{2}} D, H^{+}\right\}^{\mathbb{Z}_{2} \times S^{1}} \\
& :=\operatorname{colim}_{U \subset W^{\perp} \subset \mathcal{U}^{(}}\left[S^{U} \wedge S^{V}, S^{U} \wedge S^{W}\right]^{\mathbb{Z}_{2} \times S^{1}}
\end{aligned}
$$

Definition

(ordinary) Bauer-Furuta invariant:

$$
\begin{aligned}
\mathrm{BF}(c):=\left[f_{W}\right] & \in\left\{\operatorname{ind} D, H^{+}\right\}^{S^{1}} \\
& :=\operatorname{colim}_{U \subset W^{\perp} \subset \mathcal{U}^{\prime}}\left[S^{U} \wedge S^{V}, S^{U} \wedge S^{W}\right]^{S^{1}}
\end{aligned}
$$

Relation

$\phi:\left\{\operatorname{ind}_{\mathbb{Z}_{2}} D, H^{+}\right\}^{\mathbb{Z}_{2} \times S^{1}} \rightarrow\left\{\text { ind } D, H^{+}\right\}^{S^{1}} \leftarrow$ forgetting the \mathbb{Z}_{2}-action

$$
\mathrm{BF}(c)=\phi\left(\mathrm{BF}^{\mathbb{Z}_{2}}(c)\right)
$$

The idea of the proof of the vanishing theorem

- Under the assumptions of theorem, we prove ϕ is 0 map. \rightarrow Using equivariant obstruction theory
- The proof is inspired by Bauer's preprint.

Bauer-Furuta invariants as obstructions

Fact

- If ind $D>0 \Rightarrow\left\{S^{V}, S^{W}\right\}^{S^{1}} \cong\left\{S^{V} / S^{1}, S^{W}\right\}$.
- For sufficiently large V, W,
$\left\{S^{V} / S^{1}, S^{W}\right\} \cong\left[S^{V} / S^{1}, S^{W}\right] \leftarrow$ Ordinary cohomotopy group
\rightarrow Can use ordinary obstruction theory.
- $S^{V} / S^{1} \cong \Sigma^{k} \mathbb{C} P^{m}$
$\because V=a \mathbb{C} \oplus b \mathbb{R}, S^{1} \curvearrowright \mathbb{C}$ multiplication, $S^{1} \curvearrowright \mathbb{R}$ trivial.

Proposition
$d(c)=1, n:=\operatorname{dim} S^{V} / S^{1},\left(\Rightarrow \operatorname{dim} S^{W}=n-1.\right)$

$$
H^{r}\left(S^{\vee} / S^{1}, * ; \pi_{r}\left(S^{W}\right)\right)= \begin{cases}0 & (r \neq n) \\ \mathbb{Z} / 2 & (r=n)\end{cases}
$$

Theorem (Cf. [Hu])
\exists a subgroup $J \subset H^{n}\left(S^{V} / S^{1}, * ; \pi_{n}\left(S^{W}\right)\right)$,

$$
\begin{aligned}
{\left[S^{V} / S^{1}, S^{W}\right] } & \cong H^{n}\left(S^{V} / S^{1}, * ; \pi_{n}\left(S^{W}\right)\right) / J \\
f \quad & \mapsto d(f, \underline{0}) \leftarrow \text { difference obstruction }
\end{aligned}
$$

where $\underline{0}: S^{V} \rightarrow\{*\} \subset S^{W}$ the collapsing map.

Corollary

$$
\left\{S^{V}, S^{W}\right\}^{S^{1}} \cong\left[S^{V} / S^{1}, S^{W}\right] \cong \begin{cases}\mathbb{Z} / 2 & \text { ind } D: \text { even, } \\ 0 & \text { ind } D: \text { odd. }\end{cases}
$$

Thus $\mathrm{BF}(c)$ can be written as $\mathrm{BF}(c)=d\left(f_{W}, \underline{0}\right)$.

Equivariant obstruction theory and equiv. BF invariants

In some cases, equivariant BF invariants $\mathrm{BF}^{\mathbb{Z}_{2}}(c)$ can be written in terms of equivariant obstruction classes.

$$
\left.\begin{array}{l}
\text { Ordinary cohomology } \\
H^{r}\left(S^{V} / S^{1} ; \pi_{r}\left(S^{W}\right)\right)
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
\text { Bredon cohomology } \\
H_{\mathbb{Z}_{2} \times S^{1}}^{r}\left(S^{V} ; \underline{\pi}_{r}\left(S^{W}\right)\right)
\end{array}\right.
$$

ordinary obstruction class \leftrightarrow equivariant obstruction class

Theorem ([Bredon],[Matumoto]...)
Suppose $H_{\mathbb{Z}_{2} \times S^{1}}^{r}\left(S^{V}, * ; \underline{\pi}_{r}\left(S^{W}\right)\right)=0$ if $r \neq n=\operatorname{dim} S^{V} / S^{1}$.
Then \exists a subgroup $J^{\prime} \subset H_{\mathbb{Z}_{2} \times S^{1}}^{n}\left(S^{V}, * ; \underline{\pi}_{n}\left(S^{W}\right)\right)$,

$$
\left\{S^{V}, S^{W}\right\}^{\mathbb{Z}_{2} \times S^{1}} \cong H_{\mathbb{Z}_{2} \times S^{1}}^{n}\left(S^{V}, * ; \underline{\pi}_{n}\left(S^{W}\right)\right) / J^{\prime}
$$

The proof of the vanishing theorem

Lemma
If $2 k_{ \pm}<1+b_{+}^{\mathbb{Z}_{2}} \Rightarrow C_{\mathbb{Z}_{2} \times S^{1}}^{r}\left(S^{V}, * ; \pi_{n}\left(S^{W}\right)\right)=0$ if $r \leq n-2$.

Lemma
If $b_{+}-b_{+}^{\mathbb{Z}_{2}}$ is odd $\Rightarrow H_{\mathbb{Z}_{2} \times S^{1}}^{n-1}\left(S^{V}, * ; \underline{\pi}_{n-1}\left(S^{W}\right)\right)=0$.
Cf. If $b_{+}-b_{+}^{Z_{2}}$ is even $\Rightarrow H_{\mathbb{Z}_{2} \times S^{1}}^{n-1}\left(S^{V}, * ; \mathbb{\pi}_{n-1}\left(S^{W}\right)\right) \cong \mathbb{Z}_{2}$.

Corollary

Suppose

1. $b_{1}=0, b_{+} \geq 2, b_{+}^{\mathbb{Z}_{2}} \geq 1$,
2. $d(c)=1$,
3. $2 k_{ \pm}<1+b_{+}^{\mathbb{Z}_{2}}$
4. $b_{+}-b_{+}^{\mathbb{Z}_{2}}$: odd,

Then,
$-\left\{S^{V}, S^{W}\right\}^{\mathbb{Z}_{2} \times S^{1}} \cong H_{\mathbb{Z}_{2} \times S^{1}}^{n}\left(S^{V}, * ; \underline{\pi}_{n}\left(S^{W}\right)\right) / J^{\prime}$,

- $\mathrm{BF}^{\mathbb{Z}_{2}}(c)=d\left(f_{W}, \underline{0}\right)$.

Cf. $\operatorname{BF}(c) \in\left\{S^{V}, S^{W}\right\}^{S^{1}} \cong H^{n}\left(S^{V} / S^{1}, * ; \pi_{n}\left(S^{W}\right) / J\right.$

Compare the ordinary cohomology and the Bredon cohomology in the top degree:

$$
\exists \tilde{\phi}: H_{\mathbb{Z}_{2} \times S^{1}}^{n}\left(S^{V}, * ; \underline{\pi}_{n}\left(S^{W}\right)\right) \rightarrow H^{n}\left(S^{V} / S^{1}, * ; \pi_{n}\left(S^{W}\right)\right) \cong \mathbb{Z} / 2
$$

Claim $\tilde{\phi}$ is 0-map.
In fact, $\tilde{\phi}$ is ($\times 2$)-map.

Consider the commutative diagram:

$$
\begin{gathered}
H^{n}\left(S^{V} / S^{1}, * ; \pi_{n}\left(S^{W}\right)\right) \longrightarrow H^{n}\left(S^{V} / S^{1}, * ; \pi_{n}\left(S^{W}\right)\right) / J \ni \mathrm{BF}(c) \\
\tilde{\phi}=0 \uparrow \\
H_{\mathbb{Z}_{2} \times S^{1}}^{n}\left(S^{V}, * ; \underline{\pi}_{n}\left(S^{W}\right)\right) \longrightarrow H_{\mathbb{Z}_{2} \times S^{1}}^{n}\left(S^{V}, * ;{\pi_{n}}_{n}\left(S^{W}\right)\right) / J^{\prime} \ni \mathrm{BF}^{\mathbb{Z}_{2}}(c) .
\end{gathered}
$$

$$
\Rightarrow \mathrm{BF}(c)=0
$$

Remarks

- We can give an alternative proof of $\bmod p$ vanishing theorem in the case when $b_{1}=0 \& d(c)=0$.
- Suppose $d(c)=1 \&$ a \mathbb{Z}_{p}-action (p : odd prime) given.
- $H_{\mathbb{Z}_{p} \times S^{1}}^{r}\left(S^{V}, * ; \underline{\pi}_{r}\left(S^{W}\right)\right)=0$ for low r under some conditions.
- However ϕ is NOT a 0 -map.
\rightarrow Can not expect the vanishing theorem.
- $d(c) \geq 2 \rightarrow$ Not easy to prove the vanishing theorem.
$\because(n-2)$-th cohomology does not vanish.
$G=\mathbb{Z}_{2} \curvearrowright(X, c)$ smoothly.
Vanishing theorem of BF

1. $b_{1}=0, b_{+} \geq 2, b_{+}^{\mathbb{Z}_{2}} \geq 1$.
2. $d(c)=1$.
3. $2 k_{ \pm}<1+b_{+}^{\mathbb{Z}_{2}}$.
4. $b_{+}-b_{+}^{\mathbb{Z}_{2}}$ is odd.

Then $B F(c)=0$.
Mod p vanishing theorem of SW

1. $b_{1}=0, b_{+} \geq 2, b_{+}^{\mathbb{Z}_{2}} \geq 1$.
2. $2 k_{ \pm}<1+b_{+}^{\mathbb{Z}_{2}}$.

Then $\mathrm{SW}_{X}(c) \equiv 0 \bmod 2$.

Geometric meaning of $2 k_{ \pm}<1+b_{+}^{Z_{2}}$

Let $f_{W}: S^{V} \rightarrow S^{W}$ a finite dimensional approximation.

$$
\rightarrow f_{W}^{\prime}: S^{V} / S^{1} \rightarrow S^{W}, \mathbb{Z}_{2} \text {-equivariant. }
$$

In general,
$($ The SW-moduli $)=\left(f_{W}^{\prime}\right)^{-1}(0)$.

Geometric meaning of $2 k_{ \pm}<1+b_{+}^{\mathbb{Z}_{2}}$

In fact,

$$
2 k_{ \pm}<1+b_{+}^{\mathbb{Z}_{2}} \Leftrightarrow \operatorname{dim}\left(S^{V} / S^{1}\right)^{\mathbb{Z}_{2}}<\operatorname{dim}\left(S^{W}\right)^{\mathbb{Z}_{2}}
$$

\Rightarrow Can perturb f_{W}^{\prime} equivariantly s.t. $\left(f_{W}^{\prime}\right)^{-1}(0) \cap\left(S^{V} / S^{1}\right)^{\mathbb{Z}_{2}}=\emptyset$.

$$
\therefore \mathbb{Z}_{2} \curvearrowright\left(f_{W}^{\prime}\right)^{-1}(0) \text { free }
$$

Geometric meaning of $2 k_{ \pm}<1+b_{+}^{Z_{2}}$

When $d(c)=0$, by Pontrjagin-Thom construction,

$$
\mathrm{SW}_{X}(c)=\mathrm{BF}(c)=\#\left(f_{W}^{\prime}\right)^{-1}(0) \equiv 0 \quad \bmod 2
$$

$(\because) \mathbb{Z}_{2} \curvearrowright\left(f_{W}^{\prime}\right)^{-1}(0)$ free.
\rightarrow Mod 2 vanishing theorem

Geometric meaning of $2 k_{ \pm}<1+b_{+}^{Z_{2}}$

When $d(c)=1,\left(f_{W}^{\prime}\right)^{-1}(0)=\amalg S^{1}$.
Very roughly,

$$
\operatorname{BF}(c)=\#\left\{\text { components of }\left(f_{W}^{\prime}\right)^{-1}(0)\right\} \bmod 2 .
$$

But

$$
\mathbb{Z}_{2} \curvearrowright\left(f_{w}^{\prime}\right)^{-1}(0) \text { free } \nRightarrow \mathrm{BF}(c)=0 .
$$

$(\because) \mathbb{Z}_{2}$ can act one component freely.
We need an extra condition $b_{+}-b_{+}^{\mathbb{Z}_{2}}$: odd for the vanishing.

